[go: up one dir, main page]

login
A325779
Heinz numbers of integer partitions for which every restriction to a subinterval has a different sum.
8
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107
OFFSET
1,2
COMMENTS
First differs from A301899 in having 462.
The enumeration of these partitions by sum is given by A325768.
EXAMPLE
Most small numbers are in the sequence. However, the sequence of non-terms together with their prime indices begins:
4: {1,1}
8: {1,1,1}
9: {2,2}
12: {1,1,2}
16: {1,1,1,1}
18: {1,2,2}
20: {1,1,3}
24: {1,1,1,2}
25: {3,3}
27: {2,2,2}
28: {1,1,4}
30: {1,2,3}
32: {1,1,1,1,1}
36: {1,1,2,2}
40: {1,1,1,3}
44: {1,1,5}
45: {2,2,3}
48: {1,1,1,1,2}
49: {4,4}
50: {1,3,3}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], UnsameQ@@ReplaceList[primeMS[#], {___, s__, ___}:>Plus[s]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 20 2019
STATUS
approved