[go: up one dir, main page]

login
A325015
Array read by descending antidiagonals: T(n,k) is the number of achiral colorings of the facets of a regular n-dimensional orthoplex using up to k colors.
11
1, 2, 1, 3, 6, 1, 4, 18, 21, 1, 5, 40, 201, 308, 1, 6, 75, 1076, 34128, 180342, 1, 7, 126, 4025, 1056576, 2945136213, 366975285216, 1, 8, 196, 11901, 15303750, 2932338749408, 103863386269870076808, 10316179427644325573474464, 1
OFFSET
1,2
COMMENTS
Also called cross polytope and hyperoctahedron. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is an octahedron with eight triangular faces. For n=4, the figure is a 16-cell with sixteen tetrahedral facets. The Schläfli symbol, {3,...,3,4}, of the regular n-dimensional orthoplex (n>1) consists of n-2 threes followed by a four. Each of its 2^n facets is an (n-1)-dimensional simplex. An achiral coloring is identical to its reflection.
Also the number of achiral colorings of the vertices of a regular n-dimensional orthotope (cube) using up to k colors.
LINKS
E. M. Palmer and R. W. Robinson, Enumeration under two representations of the wreath product, Acta Math., 131 (1973), 123-143.
Wikipedia, Cross-polytope
FORMULA
The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n. It then determines the number of permutations for each partition and the cycle index for each partition.
T(n,k) = 2*A325013(n,k) - A325012(n,k) = A325012(n,k) - 2*A325014(n,k) = A325013(n,k) - A325014(n,k).
T(n,k) = Sum_{j=1..3*2^(n-2)} A325019(n,j) * binomial(k,j).
EXAMPLE
Array begins with T(1,1):
1 2 3 4 5 6 7 8 ...
1 6 18 40 75 126 196 288 ...
1 21 201 1076 4025 11901 29841 66256 ...
1 308 34128 1056576 15303750 136236276 865711763 4296782848 ...
...
For T(2,2)=6, two squares have all edges the same color, two have three edges the same color, one has opposite edges the same color, and one has opposite edges different colors.
MATHEMATICA
a48[n_] := a48[n] = DivisorSum[NestWhile[#/2&, n, EvenQ], MoebiusMu[#]2^(n/#)&]/(2n); (* A000048 *)
a37[n_] := a37[n] = DivisorSum[n, MoebiusMu[n/#]2^#&]/n; (* A001037 *)
CI0[{n_Integer}] := CI0[{n}] = CI[Transpose[If[EvenQ[n], p2 = IntegerExponent[n, 2]; sub = Divisors[n/2^p2]; {2^(p2+1) sub, a48 /@ (2^p2 sub) }, sub = Divisors[n]; {sub, a37 /@ sub}]]] 2^(n-1); (* even perm. *)
CI1[{n_Integer}] := CI1[{n}] = CI[sub = Divisors[n]; Transpose[If[EvenQ[n], {sub, a37 /@ sub}, {2 sub, a48 /@ sub}]]] 2^(n-1); (* odd perm. *)
compress[x : {{_, _} ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]] += s[[i, 2]]; s = Delete[s, i], Null]]; s)
cix[{a_, b_}, {c_, d_}] := {LCM[a, c], (a b c d)/LCM[a, c]};
Unprotect[Times]; Times[CI[a_List], CI[b_List]] := (* combine *) CI[compress[Flatten[Outer[cix, a, b, 1], 1]]]; Protect[Times];
CI0[p_List] := CI0[p] = Expand[CI0[Drop[p, -1]] CI0[{Last[p]}] + CI1[Drop[p, -1]] CI1[{Last[p]}]]
CI1[p_List] := CI1[p] = Expand[CI0[Drop[p, -1]] CI1[{Last[p]}] + CI1[Drop[p, -1]] CI0[{Last[p]}]]
pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; n!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
row[n_Integer] := row[n] = Factor[(Total[(CI1[#] pc[#]) & /@ IntegerPartitions[n]])/(n! 2^(n - 1))] /. CI[l_List] :> j^(Total[l][[2]])
array[n_, k_] := row[n] /. j -> k
Table[array[n, d-n+1], {d, 1, 10}, {n, 1, d}] // Flatten
CROSSREFS
Cf. A325012 (oriented), A325013 (unoriented), A325014 (chiral), A325019 (exactly k colors).
Other n-dimensional polytopes: A325001 (simplex), A325007 (orthotope).
Rows 1-2 are A000027, A002411.
Sequence in context: A115597 A325007 A103371 * A337414 A337410 A337389
KEYWORD
nonn,tabl,easy
AUTHOR
Robert A. Russell, May 27 2019
STATUS
approved