OFFSET
1,2
COMMENTS
a(n) = the smallest number m such that A306671(m) = n.
If a(17) exists, it must be bigger than 10^7.
EXAMPLE
For n=3; a(3) = 9 because gcd(tau(9), pod(9)) = gcd (3, 27) = 3 and 9 is the smallest.
MATHEMATICA
Array[Block[{m = 1}, While[GCD[DivisorSigma[0, m], Times @@ Divisors@ m] != #, m++]; m] &, 16] (* Michael De Vlieger, Mar 24 2019 *)
PROG
(Magma) [Min([n: n in[1..10^6] | GCD(NumberOfDivisors(n), &*[d: d in Divisors(n)]) eq k]): k in [1..16]]
(PARI) a(n) = {my(k=1, vk = divisors(k)); while(gcd(#vk, vecprod(vk)) != n, k++; vk = divisors(k)); k; } \\ Michel Marcus, Mar 06 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Mar 05 2019
EXTENSIONS
a(17)-a(38) from Jon E. Schoenfield, Mar 07 2019
STATUS
approved