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a solution.
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Solution to problem 10572. The graphs in question can conveniently be called Stanley
graphs. Let us say that a subspace involves coordinate k if it contains at least one vector
such that the kth coordinate is nonzero; a subspace is called full if it involves all n co-
ordinates. According to well-known principles of combinatorial enumeration [explained
for example in Combinatorial Specles and Tree-like Structures by Bergeron, Labelle, and
Leroux (Cambridge University Press, 1997)], e=* 3~ g(n) z"/n! is the exponential generat-
ing function for the number of full subspaces. Therefore it suffices to define a one-to-one
correspondence between Stanley graphs on {1,...,n} and full subspaces of GF(2)".

Every subspace of dimension k has a canonical basis
uy = (uy1,- .- U1n), 2 = (U21,...,U2n), - s Uk = (Uk1, ... Ukn)

such that
Uin, =1, u;;=0 forj>n;, um =0 forl#i,

for 1 <i <k, where n > n; > ny > --- > ni > 1. For example, if n = 8, k = 4, n; = 8,
ny = 5, n3 = 3, and ng = 2, the basis has the schematic pattern

up = (un,0,0,uy4, U1, w17, 1) ,
uz = (u2,0,0,u24,1,0,0,0),
uz = (u3,0,1,0,0,0,0,0),

us = (ua1,1,0,0,0,0,0,0).

This basis, obtained by a familiar triangularization procedure, is uniquely defined by the
subspace. [See D. E. Knuth, “Subspaces, subsets, and partitions,” J. Combinatorial Theory
10 (1971), 178-180, for further elementary properties of the canonical basis.]

A subspace is full if and only if no component is zero in all of its canonical basis vectors.
For example, the basis above defines a full subspace if and only if uyy V u2) Vuz Vugy =
Uyg V 24 = U1 = uy7 = 1. We define a Stanley graph corresponding to each canonical
basis by making vertex j adjacent to vertex n; when u;; = 1, for 1 < ¢ < k. For example,
the subspace spanned by the vectors

up = (1,0,0,0,0,1,1,1),
uz = (0,0,0,1,1,0,0,0),
uz = (0,0,1,0,0,0,0,0),
ug = (1,1,0,0,0,0,0,0)

has edges {1,9}, {7.9}, {8,9}, {4,5}, and {1,2}. It is clear that this procedure defines a
Stanley graph, since no vertex has neighbors both to the left and to the right. Furthermore,
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the construction is reversible: A Stanley graph with exactly n — k vertices that have
neighbors to the right corresponds to a full subspace of dimension k. Q.E.D.

Appendix. (The following remarks are mostly for my own records, but I include them
here because I'm sending a copy ohhis letter to Ira Gessel, Richard Stanley, Herb Wilf,
and Neil Sloane.) Stanley graphs are interesting combinatorial objects that do not seem
to have been investigated before; at least, the number of such graphs

£(0), £(1), £(2),...=1,1,2,6,158,1330, 15414, 245578, 5382862, . ..

A323 84|

is a sequence not yet in Sloane and Plouffe’s Encyclopedia of Integer Sequences. Nor is
the number of such graphs without isolated vertices,

1,0,1,2,11,72,677,8686,152191, 3632916, .. . ,
A2238k2

obtained by multiplying the exponential generating function by e™*; this corresponds to
full subspaces in which the canonical basis vectors all have at least two nonzero components.
Nor is the number of connected Stanley graphs,

0,1,1,2,8,52,502, 6824, 127166, 3205924, . .. ,

A 323843

obtained from In Y f(n)z"/n!. Nor is the number of Stanley trees,
0,1,1,2,7, 36,246, 2140, 21652, 260720,3598120,....; A F389)

it is interesting to enumerate the latter (see below).

A graph on the vertices {1,2,...,n} is a Stanley graph if and only if no vertex has
both left and right neighbors. Thus every Stanley graph is bipartite: Every edge connects
a vertex with right neighbors to a vertex with left neighbors. Conversely, the vertices of
every bipartite graph can be labeled {1,2,...,n} in such a way that we obtain a Stanley
graph, simply by assigning the smallest labels to the vertices of one part and the largest
labels to the vertices of the other.

Let |:| be the number of Stanley trees on n vertices such that k of the vertices have
right neighbors and n — k have left neighbors. Let
n

sz.y) =3 |,
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Then by standard methods of combinatorial enumeration we find
y+Vs(z,y) =yexp(z + 9, s(zx,y)) .

where 1, is the differential operatora 38; and ==z 33; +y %. It follows that we have the

recurrence
n+1 n n n—=1\m|n+1—-m| .
K I"s"“s"‘““k‘Jrk-l+z(m-1),1 k2 l :
m.j
these numbers |',:| form the “Gessel-Stanley triangle”
0
o L0, ATEAT
ithnsiuie e ) 27
0 1 1 0
0 1 5 1 0
0 1 17 17 1 0
0 1 49 146 49 1 0
0 1 129 922 922 129 1 0
0 1 321 4887 11234 4887 321 1 0

By the correspondence above, |:| is the number of ways to put 0Os and 1s into a tableau
shape (Ferrers diagram) with k rows and n — k columns in such a way that exactly n — 1
entries are equal to 1, and there is no way to partition the rows and columns into two parts
R, U R3 and C, U C; such that the entries of Ry N C, and R, N C; are entirely zero. For

example, the 17 such arrays when n = 5 and k = 2 are
1 e L7 (9 B B BR[O o 150 S 50 1 16 G o
1 10 100 01 0:2:0.:001 -0 D14

301 101 8L 013 021 0¥ 14010103800
i [ | 110 8141 11 10 301 11T 100 1)

We have 3 |3| z" = z%/(1 — z)(1 — 2z)?, according to Sloane and Plouffe.

After writing the above, I happened to see Ira Gessel's paper in Electronic J. Com-
binatorics 3 (2) (1996), #R8 [The Foata Festschrift, 197-201], where the quantity |}
is called un—1 k—1,n—k-1; Gessel’s uy, ;; is the number of forests on vertices {1,2,...,n}
having ¢ descents and j + 1 leaves. So Stanley trees have implicitly been considered before!



