New Seg/

STANFORD UNIVERSITY

STANFORD, CALIFORNIA 94305-9045

DONALD E. KNUTH
Professor Emeritus of The Art of
Computer Programming
Computer Science Department – Gates 4B
Telephone [415] 723-4367

April 29, 1997

Professor Daniel Ullman Mathematics Department George Washington University 2130 H Street NW Washington, DC 20052–0001

Dear Daniel,

Richard Stanley's problem in the February issue was too tantalizing to put down, so I enclose a solution.

Sincerely,

Donald E. Knuth Professor

DEK/pw

Enclosure: Solution to problem 10572

cc: Gessel, Sloane, Stanley, Wilf

Solution to problem 10572. The graphs in question can conveniently be called Stanley graphs. Let us say that a subspace *involves* coordinate k if it contains at least one vector such that the kth coordinate is nonzero; a subspace is called *full* if it involves all n coordinates. According to well-known principles of combinatorial enumeration [explained for example in Combinatorial Species and Tree-like Structures by Bergeron, Labelle, and Leroux (Cambridge University Press, 1997)], $e^{-x} \sum g(n) x^n/n!$ is the exponential generating function for the number of full subspaces. Therefore it suffices to define a one-to-one correspondence between Stanley graphs on $\{1, \ldots, n\}$ and full subspaces of $GF(2)^n$.

Every subspace of dimension k has a canonical basis

$$u_1 = (u_{11}, \ldots, u_{1n}), u_2 = (u_{21}, \ldots, u_{2n}), \ldots, u_k = (u_{k1}, \ldots, u_{kn})$$

such that

$$u_{in_i} = 1$$
, $u_{ij} = 0$ for $j > n_i$, $u_{ln_i} = 0$ for $l \neq i$,

for $1 \le i \le k$, where $n \ge n_1 > n_2 > \cdots > n_k \ge 1$. For example, if n = 8, k = 4, $n_1 = 8$, $n_2 = 5$, $n_3 = 3$, and $n_4 = 2$, the basis has the schematic pattern

$$u_1 = (u_{11}, 0, 0, u_{14}, u_{16}, u_{17}, 1),$$

$$u_2 = (u_{21}, 0, 0, u_{24}, 1, 0, 0, 0),$$

$$u_3 = (u_{31}, 0, 1, 0, 0, 0, 0, 0),$$

$$u_4 = (u_{41}, 1, 0, 0, 0, 0, 0, 0).$$

This basis, obtained by a familiar triangularization procedure, is uniquely defined by the subspace. [See D. E. Knuth, "Subspaces, subsets, and partitions," *J. Combinatorial Theory* **10** (1971), 178–180, for further elementary properties of the canonical basis.]

A subspace is full if and only if no component is zero in all of its canonical basis vectors. For example, the basis above defines a full subspace if and only if $u_{11} \vee u_{21} \vee u_{31} \vee u_{41} = u_{14} \vee u_{24} = u_{16} = u_{17} = 1$. We define a Stanley graph corresponding to each canonical basis by making vertex j adjacent to vertex n_i when $u_{ij} = 1$, for $1 \le i \le k$. For example, the subspace spanned by the vectors

$$u_1 = (1, 0, 0, 0, 0, 1, 1, 1),$$

$$u_2 = (0, 0, 0, 1, 1, 0, 0, 0),$$

$$u_3 = (0, 0, 1, 0, 0, 0, 0, 0),$$

$$u_4 = (1, 1, 0, 0, 0, 0, 0, 0)$$

has edges $\{1,9\}$, $\{7,9\}$, $\{8,9\}$, $\{4,5\}$, and $\{1,2\}$. It is clear that this procedure defines a Stanley graph, since no vertex has neighbors both to the left and to the right. Furthermore,

the construction is reversible: A Stanley graph with exactly n-k vertices that have neighbors to the right corresponds to a full subspace of dimension k. Q.E.D.

Appendix. (The following remarks are mostly for my own records, but I include them here because I'm sending a copy of this letter to Ira Gessel, Richard Stanley, Herb Wilf, and Neil Sloane.) Stanley graphs are interesting combinatorial objects that do not seem to have been investigated before; at least, the number of such graphs

$$f(0), f(1), f(2), \ldots = 1, 1, 2, 6, 158, 1330, 15414, 245578, 5382862, \ldots$$

is a sequence not yet in Sloane and Plouffe's Encyclopedia of Integer Sequences. Nor is the number of such graphs without isolated vertices,

obtained by multiplying the exponential generating function by e^{-x} ; this corresponds to full subspaces in which the canonical basis vectors all have at least two nonzero components. Nor is the number of *connected* Stanley graphs,

obtained from $\ln \sum f(n)x^n/n!$. Nor is the number of Stanley trees,

it is interesting to enumerate the latter (see below).

A graph on the vertices $\{1, 2, ..., n\}$ is a Stanley graph if and only if no vertex has both left and right neighbors. Thus every Stanley graph is bipartite: Every edge connects a vertex with right neighbors to a vertex with left neighbors. Conversely, the vertices of every bipartite graph can be labeled $\{1, 2, ..., n\}$ in such a way that we obtain a Stanley graph, simply by assigning the smallest labels to the vertices of one part and the largest labels to the vertices of the other.

Let $\binom{n}{k}$ be the number of Stanley trees on n vertices such that k of the vertices have right neighbors and n-k have left neighbors. Let

$$s(x,y) = \sum_{k,n} \left| \frac{n}{k} \right| \frac{x^k y^{n-k}}{n!}$$
$$= \frac{xy}{2} + \frac{x^2 y + xy^2}{6} + \frac{x^3 y + 5x^2 y^2 + xy^3}{24} + \cdots$$

Then by standard methods of combinatorial enumeration we find

$$y + \vartheta s(x, y) = y \exp(x + \vartheta_x s(x, y)),$$

where ϑ_x is the differential operator $x \frac{\partial}{\partial x}$ and $\vartheta = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$. It follows that we have the recurrence

$$\begin{vmatrix} n+1 \\ k \end{vmatrix} = \delta_{n1}\delta_{k1} + k \begin{vmatrix} n \\ k \end{vmatrix} + \begin{vmatrix} n \\ k-1 \end{vmatrix} + \sum_{m,j} \binom{n-1}{m-1} \begin{vmatrix} m \\ j \end{vmatrix} \begin{vmatrix} n+1-m \\ k-j \end{vmatrix} j;$$

these numbers $\binom{n}{k}$ form the "Gessel-Stanley triangle"

								0									
							0		0			A	2	9	D.	47	_
						0		1		0		/ 1	<	- 1.		. 1	
					0		1		1		0						
				0		1		5		1		0					
			0		1		17		17		1		0				
		0		1		49		146		49		1		0			
	0		1		129		922		922		129		1		0		
0		1		321		4887		11234		4887		321		1		0	

By the correspondence above, $\binom{n}{k}$ is the number of ways to put 0s and 1s into a tableau shape (Ferrers diagram) with k rows and n-k columns in such a way that exactly n-1 entries are equal to 1, and there is no way to partition the rows and columns into two parts $R_1 \cup R_2$ and $C_1 \cup C_2$ such that the entries of $R_1 \cap C_1$ and $R_2 \cap C_2$ are entirely zero. For example, the 17 such arrays when n=5 and k=2 are

We have $\sum_{n=0}^{\infty} |x^n| = x^3/(1-x)(1-2x)^2$, according to Sloane and Plouffe.

After writing the above, I happened to see Ira Gessel's paper in Electronic J. Combinatorics 3 (2) (1996), #R8 [The Foata Festschrift, 197–201], where the quantity $\binom{n}{k}$ is called $u_{n-1,k-1,n-k-1}$; Gessel's $u_{n,i,j}$ is the number of forests on vertices $\{1,2,\ldots,n\}$ having i descents and j+1 leaves. So Stanley trees have implicitly been considered before!