[go: up one dir, main page]

login
A321994
Number of different chromatic symmetric functions of hypertrees on n vertices.
4
1, 1, 2, 4, 9, 22, 59, 165
OFFSET
1,3
COMMENTS
A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895).
Stanley conjectured that the number of distinct chromatic symmetric functions of trees with n vertices is equal to A000055, i.e., the chromatic symmetric function distinguishes between trees. It has been proven for trees with up to 25 vertices. If it is true in general, does the chromatic symmetric function also distinguish between hypertrees, meaning this sequence would be equal to A035053?
LINKS
MATHEMATICA
spsu[_, {}]:={{}}; spsu[foo_, set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@spsu[Select[foo, Complement[#, Complement[set, s]]=={}&], Complement[set, s]]]/@Cases[foo, {i, ___}];
stableSets[u_, Q_]:=If[Length[u]===0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r===w||Q[r, w]||Q[w, r]], Q]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
density[c_]:=Total[(Length[#]-1&)/@c]-Length[Union@@c];
hyall[n_]:=Select[stableSets[Select[Subsets[Range[n]], Length[#]>1&], Or[SubsetQ[#1, #2], Length[Intersection[#1, #2]]>1]&], And[Union@@#==Range[n], Length[csm[#]]==1, density[#]==-1]&];
chromSF[g_]:=Sum[m[Sort[Length/@stn, Greater]], {stn, spsu[Select[Subsets[Union@@g], Select[DeleteCases[g, {_}], Function[ed, Complement[ed, #]=={}]]=={}&], Union@@g]}];
Table[Length[Union[chromSF/@If[n==1, {{{1}}}, hyall[n]]]], {n, 5}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Nov 24 2018
STATUS
approved