[go: up one dir, main page]

login
A321730
Number of ways to partition the Young diagram of an integer partition of n into vertical sections of the same sizes as the parts of the original partition.
5
1, 1, 1, 3, 8, 23, 79, 303, 1294, 5934, 29385, 156232, 884893
OFFSET
0,4
COMMENTS
A vertical section is a partial Young diagram with at most one square in each row. For example, a suitable partition (shown as a coloring by positive integers) of the Young diagram of (322) is:
1 2 3
1 2
2 3
EXAMPLE
The a(5) = 23 partitions of Young diagrams of integer partitions of 5 into vertical sections of the same sizes as the parts of the original partition, shown as colorings by positive integers:
1 2 3 1 2 3 1 2 3
1 2 3
1 2 3
.
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 2 1 3 1 3 2 1 3 1 3 1 2 3 3 2 2 3 3 2
3 2 3 3 2 3 1 1 3 3
.
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 3 3 2 3 3 3 3 3
3 1 4 3 2 4 3 4 4
4 4 1 4 4 2 4 3 4
.
1
2
3
4
5
MATHEMATICA
spsu[_, {}]:={{}}; spsu[foo_, set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@spsu[Select[foo, Complement[#, Complement[set, s]]=={}&], Complement[set, s]]]/@Cases[foo, {i, ___}];
ptnpos[y_]:=Position[Table[1, {#}]&/@y, 1];
ptnverts[y_]:=Select[Join@@Table[Subsets[ptnpos[y], {k}], {k, Reverse[Union[y]]}], UnsameQ@@First/@#&];
Table[Sum[Length[Select[spsu[ptnverts[y], ptnpos[y]], Function[p, Sort[Length/@p]==Sort[y]]]], {y, IntegerPartitions[n]}], {n, 5}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Nov 18 2018
STATUS
approved