[go: up one dir, main page]

login
A321510
Primes p for which there exists a prime q < p such that 3*q == 1 (mod p).
1
5, 7, 19, 43, 61, 79, 109, 151, 163, 223, 271, 349, 421, 439, 523, 601, 613, 631, 673, 691, 811, 853, 919, 991, 1009, 1051, 1063, 1153, 1213, 1231, 1279, 1321, 1429, 1531, 1549, 1663, 1693, 1789, 1801, 1873, 1933, 1951, 2113, 2143, 2179, 2221, 2239, 2503, 2539, 2683, 2791, 2833, 2851
OFFSET
1,1
COMMENTS
A104163 with 5 prepended (see example). For any prime p in A104163 q = (2*p+1)/3, then q < p and 3*q == 1 (mod p).
FORMULA
a(n+1) = A104163(n); n >= 1.
EXAMPLE
For p = 11, the only number t < 11 such that 3*t == 1 (mod 11) is t = 4, which is not prime, therefore 11 is not a term.
For p = 5, q = 2 (prime); 2*3 = 6 == 1 (mod 5) therefore 5 is a term.
MAPLE
for n from 3 to 300 do
Y := ithprime(n);
Z := 1/3 mod Y;
if isprime(Z) then print(Y);
end if:
end do:
MATHEMATICA
aQ[p_]:=Module[{ans=False, q=2}, While[q<p, If[Mod[3*q, p]==1, ans=True; Break[]]; q=NextPrime[q]]; ans]; Select[Prime[Range[350]], aQ] (* Amiram Eldar, Nov 12 2018 *)
Join[{5}, Select[Prime[Range[400]], PrimeQ[((2 # + 1)) / 3] &]] (* Vincenzo Librandi, Nov 17 2018 *)
PROG
(PARI) isok(p) = if (isprime(p), forprime(q=1, p-1, if ((3*q % p) == 1, return (1)))); \\ Michel Marcus, Nov 14 2018
CROSSREFS
Cf. A104163 (essentially the same sequence), A005383.
Sequence in context: A296935 A106987 A342738 * A084198 A036061 A288608
KEYWORD
nonn
AUTHOR
STATUS
approved