[go: up one dir, main page]

login
A321344
Expansion of 1/(1 - x) * Product_{k>=0} 1/(1 - x^(3^k))^(3^(k+1)).
3
1, 4, 10, 29, 71, 146, 309, 615, 1119, 2068, 3709, 6289, 10793, 18206, 29513, 48201, 77757, 121668, 191257, 297847, 452761, 690524, 1045661, 1552697, 2310786, 3419082, 4976739, 7254407, 10522736, 15052376, 21552205, 30731101, 43297942, 61039239, 85741503, 119191245
OFFSET
0,2
COMMENTS
Also the coefficient of x^(3*n) in the expansion of Product_{k>=0} 1/(1 - x^(3^k))^(3^k).
EXAMPLE
Product_{k>=0} 1/(1 - x^(3^k))^(3^k) = 1 + x + x^2 + 4*x^3 + 4*x^4 + 4*x^5 + 10*x^6 + 10*x^7 + 10*x^8 + 29*x^9 + 29*x^10 + 29*x^11 + ... .
PROG
(PARI) seq(n)={Vec(1/((1 - x)*prod(k=0, logint(n, 3), (1 - x^(3^k) + O(x*x^n))^(3^(k+1)))))} \\ Andrew Howroyd, Nov 06 2018
CROSSREFS
Sequence in context: A006907 A305204 A327590 * A329156 A052946 A026152
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 06 2018
STATUS
approved