OFFSET
1,2
COMMENTS
Take the m X n grid graph with m*n vertices, each connected to four neighbors [except only two at the corners, otherwise three on the edges]. We ask for a vertex cover that is connected. It should also be minimal: if we leave out any element and it is no longer a connected vertex cover.
LINKS
M. R. Garey and D. S. Johnson, The rectilinear Steiner tree problem is NP-complete, SIAM J. Applied Math., 32 (1977), 826-834. [They call these "connected node covers".]
EXAMPLE
The array begins:
1, 2, 1, 1, 1, 1, 1, 1, 1, ...
2, 4, 6, 12, 20, 36, 64, 112, 200, ...
1, 6, 11, 30, 75, 173, 434, 1054, 2558, ...
1, 12, 30, 110, 382, 1270, 4298, 14560, 49204, ...
1, 20, 75, 382, 1804, 7888, 36627, 166217, 755680, ...
1, 36, 173, 1270, 7888, 46416, 287685, 1751154, 10656814, ...
1, 64, 434, 4298, 36627, 287685, 2393422, 19366411, 157557218, ...
1, 112, 1054, 14560, 166217, 1751154, 19366411, 208975042, 2255742067, ...
1, 200, 2558, 49204, 755680, 10656814, 157557218, 2255742067, 32411910059, ...
...
The T(3,3) = 11 minimal connected vertex covers of a 3 X 3 grid are:
X.X .X. X.. X.X X.. X.. ..X ... ... .X. ...
... ... ..X ... ..X .X. .X. .X. .X. ... X.X
X.X X.X X.. .X. X.. ... ... X.. ..X .X. ...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Oct 22 2018, based on email from Don Knuth, Oct 20 2018
STATUS
approved