[go: up one dir, main page]

login
A320299
Lengths of runs of consecutive zeros in binary expansion of Pi.
1
0, 2, 2, 4, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 3, 3, 4, 1, 0, 1, 3, 0, 4, 3, 0, 1, 2, 0, 3, 2, 0, 3, 0, 2, 0, 3, 1, 3, 1, 0, 0, 7, 0, 1, 0, 0, 5, 0, 0, 2, 0, 1, 3, 2, 1, 2, 6, 2, 2, 0, 0, 5, 3, 3, 1, 2, 0, 2, 0, 0, 0, 0, 2, 0, 3, 0, 0, 1, 8, 5, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 2, 0, 3, 0, 0, 1, 0, 3, 2, 0, 0, 2, 0, 1, 0, 2, 3, 2, 1, 3, 1, 2
OFFSET
1,2
FORMULA
a(n) = A004711(n+1) - A004711(n) - 1 = A320298(n) - 1 (this is about Pi/4, but they are essentially the same).
MATHEMATICA
Flatten@ Map[If[Union@ # == {1}, ConstantArray[0, Length@ # - 1], Length@ #] &, Split@ RealDigits[Pi, 2, 250][[1]] ] (* Michael De Vlieger, Oct 20 2018 *)
CROSSREFS
Sequence in context: A088251 A229627 A140839 * A357969 A292943 A279906
KEYWORD
nonn,base
AUTHOR
Jack Zhang, Oct 10 2018
STATUS
approved