[go: up one dir, main page]

login
A319509
a(n) = n! * [x^n] 1/(1 - n + exp(x)*(exp(n*x) - 1)/(exp(x) - 1)).
10
1, -1, 13, -828, 145046, -53306325, 35351663831, -38335940184976, 63385171527442332, -151639317344211911505, 503956292395339783686325, -2252032996384696958326480356, 13175456854397460097168816336930, -98695402553214372025148083384255381
OFFSET
0,3
LINKS
FORMULA
a(n) = n! * [x^n] 1/(1 - n + exp(x) + exp(2*x) + exp(3*x) + ... + exp(n*x)).
MATHEMATICA
Table[n! SeriesCoefficient[1/(1 - n + Exp[x] (Exp[n x] - 1)/(Exp[x] - 1)), {x, 0, n}], {n, 0, 13}]
PROG
(PARI) default(seriesprecision, 101); {a(n) = n!*polcoeff((1/(1-n+exp(x)*(exp(n*x)-1)/(exp(x)-1)) + O(x^(n+1))), n)};
for(n=0, 25, print1(a(n), ", ")) \\ G. C. Greubel, Oct 09 2018
CROSSREFS
Cf. A319508.
Sequence in context: A328033 A366559 A316673 * A189446 A296803 A289225
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Sep 21 2018
STATUS
approved