[go: up one dir, main page]

login
A319359
Expansion of Product_{i>=1, j>=1, k>=1} (1 - x^(i*j*k)).
2
1, -1, -3, 0, 0, 9, 5, 4, -1, -27, -2, -33, -17, 8, 43, 92, 36, 100, -8, -11, -136, -120, -296, -363, -13, -203, 286, 306, 1010, 667, 724, 790, 151, -258, -1207, -964, -3325, -2059, -2924, -1992, -2116, 1277, 3625, 4437, 7724, 7734, 11524, 5801, 9685, -855, -2799, -13409, -16423
OFFSET
0,3
LINKS
FORMULA
G.f.: Product_{k>=1} (1 - x^k)^A007425(k).
G.f.: exp(-Sum_{k>=1} A174466(k)*x^k/k).
MAPLE
a:=series(mul(mul(mul(1-x^(i*j*k), k=1..55), j=1..55), i=1..55), x=0, 53): seq(coeff(a, x, n), n=0..52); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 52; CoefficientList[Series[Product[(1 - x^(i j k)), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}], {x, 0, nmax}], x]
nmax = 52; CoefficientList[Series[Product[(1 - x^k)^Sum[DivisorSigma[0, d], {d, Divisors[k]}], {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, -Sum[Sum[d DivisorSigma[1, k/d] DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 52}]
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Sep 17 2018
STATUS
approved