[go: up one dir, main page]

login
Number of series-reduced locally nonintersecting rooted trees whose leaves span an initial interval of positive integers with multiplicities an integer partition of n.
0

%I #5 Sep 17 2018 08:34:53

%S 1,1,6,48,455,5700,83138,1454870

%N Number of series-reduced locally nonintersecting rooted trees whose leaves span an initial interval of positive integers with multiplicities an integer partition of n.

%C A rooted tree is series-reduced if every non-leaf node has at least two branches. It is locally nonintersecting if the intersection of all branches directly under any given node with at least two branches is empty.

%e The a(3) = 6 trees are: (1(12)), (112), (1(23)), (2(13)), (3(12)), (123). Missing from this list but counted by A316651 are: (1(11)), (2(11)), (111).

%t nonintQ[u_]:=Intersection@@u=={};

%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];

%t mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];

%t gro[m_]:=gro[m]=If[Length[m]==1,{m},Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])],nonintQ]];

%t Table[Sum[Length[gro[m]],{m,Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]}],{n,5}]

%Y Cf. A000081, A007562, A273873, A289509, A301700, A316470, A316473, A316475, A316651, A319271.

%K nonn,more

%O 1,3

%A _Gus Wiseman_, Sep 16 2018