OFFSET
0,5
COMMENTS
The profile (p_0, p_1, ..., p_n) is the number of nodes at each level of the tree.
REFERENCES
D. E. Knuth, The Art of Computer Programming, Volume 4, Pre-fascicle 5B, Introduction to Backtracking, 7.2.2. Backtrack programming. 2018.
LINKS
Peter Luschny, Rows n = 0..19, flattened
Candida Bowtell and Peter Keevash, The n-queens problem, arXiv:2109.08083 [math.CO] 2021.
V. Kotesovec, Ways of placing non-attacking queens and kings..., part of "Between chessboard and computer", 1996, pp. 204 - 206.
Peter Luschny, Julia implementation of the n queens problem with profiles
Michael Simkin, The number of n-queens configurations, arXiv:2107.13460 [math.CO] 2021.
Wikipedia, Backtracking
Wikipedia, Eight queens puzzle
EXAMPLE
[1]
[1, 1]
[1, 2, 0]
[1, 3, 2, 0]
[1, 4, 6, 4, 2]
[1, 5, 12, 14, 12, 10]
[1, 6, 20, 36, 46, 40, 4]
[1, 7, 30, 76, 140, 164, 94, 40]
[1, 8, 42, 140, 344, 568, 550, 312, 92]
[1, 9, 56, 234, 732, 1614, 2292, 2038, 1066, 352]
[1, 10, 72, 364, 1400, 3916, 7552, 9632, 7828, 4040, 724]
[1, 11, 90, 536, 2468, 8492, 21362, 37248, 44148, 34774, 15116, 2680]
[1, 12, 110, 756, 4080, 16852, 52856, 120104, 195270, 222720, 160964, 68264, 14200]
PROG
(Julia) # See the link section.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Sep 16 2018
STATUS
approved