[go: up one dir, main page]

login
A319199
One of the three successive approximations up to 7^n for 7-adic integer 6^(1/3). This is the 6 (mod 7) case (except for n = 0).
11
0, 6, 34, 83, 769, 3170, 36784, 36784, 3330956, 26390160, 187804588, 470279837, 470279837, 83518003043, 180407013450, 180407013450, 23918214563165, 90384075702367, 1020906131651195, 7534560523292991, 53130141264785563, 212714673860009565, 1888352266109861586
OFFSET
0,2
COMMENTS
For n > 0, a(n) is the unique number k in [1, 7^n] and congruent to 6 mod 7 such that k^3 - 6 is divisible by 7^n.
For k not divisible by 7, k is a cube in 7-adic field if and only if k == 1, 6 (mod 7). If k is a cube in 7-adic field, then k has exactly three cubic roots.
FORMULA
a(n) = A319097(n)*(A210852(n)-1) mod 7^n = A319097(n)*A210852(n)^2 mod 7^n.
a(n) = A319098(n)*(A212153(n)-1) mod 7^n = A319098(n)*A212153(n)^2 mod 7^n.
EXAMPLE
The unique number k in [1, 7^2] and congruent to 6 modulo 7 such that k^3 - 6 is divisible by 7^2 is k = 34, so a(2) = 24.
The unique number k in [1, 7^3] and congruent to 6 modulo 7 such that k^3 - 6 is divisible by 7^3 is k = 83, so a(3) = 122.
PROG
(PARI) a(n) = lift(sqrtn(6+O(7^n), 3))
CROSSREFS
Approximations of p-adic cubic roots:
A290567 (5-adic, 2^(1/3));
A290568 (5-adic, 3^(1/3));
A309444 (5-adic, 4^(1/3));
A319097, A319098, this sequence (7-adic, 6^(1/3));
A320914, A320915, A321105 (13-adic, 5^(1/3)).
Sequence in context: A072312 A233510 A296808 * A305164 A067389 A281057
KEYWORD
nonn
AUTHOR
Jianing Song, Aug 27 2019
STATUS
approved