[go: up one dir, main page]

login
A319191
Coefficient of p(y) / A056239(n)! in Product_{i >= 1} (1 + x_i), where p is power-sum symmetric functions and y is the integer partition with Heinz number n.
35
1, 1, -1, 1, 2, -3, -6, 1, 3, 8, 24, -6, -120, -30, -20, 1, 720, 15, -5040, 20, 90, 144, 40320, -10, 40, -840, -15, -90, -362880, -120, 3628800, 1, -504, 5760, -420, 45, -39916800, -45360, 3360, 40, 479001600, 630, -6227020800, 504, 210, 403200, 87178291200
OFFSET
1,5
COMMENTS
A refinement of Stirling numbers of the first kind.
FORMULA
If n = Product prime(x_i)^y_i is the prime factorization of n, then a(n) = (-1)^(Sum x_i * y_i - Sum y_i) (Sum x_i * y_i)! / (Product x_i^y_i * Product y_i!).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
numPermsOfType[ptn_]:=Total[ptn]!/Times@@ptn/Times@@Factorial/@Length/@Split[ptn];
Table[(-1)^(Total[primeMS[n]]-PrimeOmega[n])*numPermsOfType[primeMS[n]], {n, 100}]
CROSSREFS
KEYWORD
sign
AUTHOR
Gus Wiseman, Sep 13 2018
STATUS
approved