[go: up one dir, main page]

login
A318048
Size of the span of the unlabeled rooted tree with Matula-Goebel number n.
2
1, 2, 3, 2, 4, 4, 4, 2, 6, 6, 5, 4, 6, 3, 9, 2, 6, 6, 4, 6, 6, 8, 10, 4, 12, 6, 10, 4, 9, 9, 6, 2, 12, 6, 9, 6, 6, 4, 9, 6, 9, 7, 6, 8, 15, 10, 15, 4, 5, 12, 9, 7, 4, 10, 16, 4, 7, 9, 8, 9, 10, 10, 11, 2, 13, 12, 6, 7, 14, 10, 9, 6, 10, 7, 21, 3, 12, 10, 12, 6
OFFSET
1,2
COMMENTS
The span of a tree is defined to be the set of possible terminal subtrees of initial subtrees, or, which is the same, the set of possible initial subtrees of terminal subtrees.
EXAMPLE
42 is the Matula-Goebel number of (o(o)(oo)), which has span {o, (o), (oo), (ooo), (oo(oo)), (o(o)o), (o(o)(oo))}, so a(42) = 7.
MATHEMATICA
ext[c_, {}]:=c; ext[c_, s:{__}]:=Extract[c, s]; rpp[c_, v_, {}]:=v; rpp[c_, v_, s:{__}]:=ReplacePart[c, v, s];
RLO[ear_, rue:{__}]:=Union@@(Function[x, rpp[ear, x, #2]]/@ReplaceList[ext[ear, #2], #1]&@@@Select[Tuples[{rue, Position[ear, _]}], MatchQ[ext[ear, #[[2]]], #[[1, 1]]]&]);
RL[ear_, rue:{__}]:=FixedPoint[Function[keeps, Union[keeps, Join@@(RLO[#, rue]&/@keeps)]], {ear}];
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
MGTree[n_]:=If[n==1, {}, MGTree/@primeMS[n]];
Table[Length[Union[Cases[RL[MGTree[n], {List[__List]:>List[]}], _List, {1, Infinity}]]], {n, 100}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 13 2018
STATUS
approved