[go: up one dir, main page]

login
Sequence related to the Taylor expansion of the Jacobi theta_3 constant.
2

%I #17 Apr 30 2023 18:16:35

%S 1,1,-1,51,849,-26199,1341999,82018251,18703396449,-993278479599,

%T -78795859032801,38711746282537251,-923351332174412751,

%U 4688204953344642495801,501271295036889289819599,-89944302490128540556106949,-104694993963067299023875442751,63396004159664562363095882996001

%N Sequence related to the Taylor expansion of the Jacobi theta_3 constant.

%H Christian Krattenthaler and Thomas W. Müller, <a href="https://arxiv.org/abs/2304.11471">The congruence properties of Romik's sequence of Taylor.coefficients of Jacobi's theta function theta_3</a>, arXiv:2304.11471 [math.NT], 2023. See p. 1.

%H Dan Romik, <a href="https://arxiv.org/abs/1807.06130">The Taylor coefficients of the Jacobi theta_3</a>, arXiv:1807.06130 [math.NT], 2018.

%H Robert Scherer, <a href="https://arxiv.org/abs/1904.04509">Congruences modulo primes of the Romik sequence related to the Taylor expansion of the Jacobi theta constant theta_3</a>, arXiv:1904.04509 [math.NT], 2019.

%H Tanay Wakhare, Christophe Vignat, <a href="https://arxiv.org/abs/1909.01508">Taylor coefficients of the Jacobi theta3(q) function</a>, arXiv:1909.01508 [math.NT], 2019.

%Y Cf. A175573 (theta3(1)).

%K sign

%O 0,4

%A _Michel Marcus_, Aug 03 2018

%E More terms from Romik article added by _Michel Marcus_, Apr 10 2019