[go: up one dir, main page]

login
A317238
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 2, 4, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 4, 4, 8, 12, 12, 8, 16, 24, 28, 24, 16, 32, 64, 60, 60, 64, 32, 64, 184, 211, 168, 211, 184, 64, 128, 432, 597, 674, 674, 597, 432, 128, 256, 1088, 1619, 2432, 4798, 2432, 1619, 1088, 256, 512, 2944, 4792, 8255, 24487, 24487, 8255, 4792, 2944, 512, 1024
OFFSET
1,2
COMMENTS
Table starts
...1....2.....4......8......16.......32........64.........128..........256
...2....4....12.....24......64......184.......432........1088.........2944
...4...12....28.....60.....211......597......1619........4792........13802
...8...24....60....168.....674.....2432......8255.......29245.......105103
..16...64...211....674....4798....24487....112675......602717......3142280
..32..184...597...2432...24487...157007....995887.....7221707.....50355283
..64..432..1619...8255..112675...995887...8436662....83084854....788831052
.128.1088..4792..29245..602717..7221707..83084854..1148371444..15185768273
.256.2944.13802.105103.3142280.50355283.788831052.15185768273.277147933683
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +8*a(n-3) -8*a(n-4) -8*a(n-5) for n>6
k=3: [order 13] for n>14
k=4: [order 65] for n>67
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..1. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..1
..1..0..1..1. .1..1..0..1. .0..0..0..0. .1..1..0..0. .1..0..0..1
..0..0..0..0. .1..1..1..0. .1..1..0..1. .1..1..1..1. .1..0..0..0
..0..0..0..0. .1..1..1..1. .1..1..1..0. .1..1..1..1. .0..0..0..0
..1..1..0..0. .1..1..1..1. .1..1..1..1. .0..0..1..1. .0..0..1..1
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A303794.
Sequence in context: A304848 A316545 A306060 * A260038 A193916 A304347
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jul 24 2018
STATUS
approved