THE WYTHOFF AND THE ZECKENDORF REPRESENTATIONS
OF NUMBERS ARE EQUIVALENT

Wolfdieter Lang

1. INTRODUCTION AND SYNOPSIS

The quintessence of many application of Fibonacci numbers is the binary substitution
sequence 1—10, 0—1. The infinite sequence generated this way is self-similar and quasiperiodic.
See refs. [7, 16] for details on this rabbit or golden sequences. It is intimately related to
Wythoff’s complementary sequences which cover the natural numbers (| - | is the greatest integer‘

function)

A(m) =|mp), B(m):=|mp?, meN, o> =p+1,0>0. (1.1)
A(0) := 0=:B(0). The relationship is

A(l)=1, A(n) = n-f-::z;:ih(k), n=2,..., B(n)=n+ A(n), (1.2)

where h(k) is the k-th entry of the half-sided infinite substitution sequence
{1,0,1,1,0,1,0,1,1,...}. In particular, there is a 1, resp. 0, at entry number n = A(m), resp.
n = B(p), for every m € N and p € N. See refs. [21, 5, 17, 18, 12, 6, 7, 20, 19, 2] for details on
WythofP’s sequences. For computational purposes (1.2) is more convenient than (1.1) because

the irrational ¢, the golden ratio, does not enter.

There is a unique representation for every natural number N € N in terms of Wythoff
orbits of 1. This means that every number N can be written uniquely as a composition of
Wythoff sequences A and B acting on 1. Because 1 = A(1), the composition for N > 2 can be
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taken to start with B(1). In this way, every number N > 2 is represented as a Wythoff string

ending with B(1), e.g. (4)y = AAB(1) = A?B(1), (5)y = BB(1) = B*(1). We omit brackets
and also use a notation with A replaced by 1 and B replaced by 0 (sometimes 2), e.g.
W(4) = 110 (or 112), W(5) =00 (or 22). Such Wythoff representations, as we should like to
call them, have been the topic of some papers by Hoggatt and Bicknell-Johnson [10, 9]. In the
Appendiz and Fig. 1 the reader can find an algorithm for W(N), the Wythoff string

corresponding to N.

Another, more familiar, unique representation of a natural number is its partition into
nonadjacent Fibonacci numbers. This is usually called the Zeckendorf representation of N (we
shall only use its canonical version of the first kind, the one with 1 = F, and without F,) [22, 4,
8, 3, 20, 2. E.g. (4)z=F,+F, (5)7=F; An obvious string notation is used as well:
Z(4) =101-, Z(5) = 1000 -, where the - is a reminder for the first canonical representation and

is positioned next to the F, entry.

The conjecture of a direct relationship between these two unique representations is

supported by well known identities like
AR=2B(1)=1=F,, k=23,... (1.3)
AR 3B ) —1=F_ +F =L, k=3,4,.., (1.4)

for the Fibonacci numbers and the Zeckendorf representation of the Lucas numbers. These egs.

can be found, e.g., in ref. [3], as special cases of identity (6.15). 1

The equivalence of both representations is the content of the following theorem. It will
open the passage from one representation to the other without having to know the number N

itself.
Theorem: (Wythoff-Zeckendorf Bijection)
Part WZ) If, for N = 2,3,4,...,
(N)y = A'nB'n...A"IB1(1), n € N, (15)
with i, € No = NU{0}, j,, i, _ 1.1, J) € N, then

s(N)

(N —-1)g =kZ F

=1 2+ Do am(V)
where s(N)= Y} _,Jj is the total number of B’s in the Wythoff string (N)y,, and the

= : F((N)y0), (1.6)

sequence {r;(N)}, for [ = 1,...,s(V) is read from the string (V )y, from left to right, as follows
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T =1,
Jnz2 Ty =Ty = =rjn=0,
Tjpt1 = -1
In 122 rJr:'*'z_ =rjﬂ+jn—l=0’

(1.7)
Tt in_qteetig+1 =i
=% Ti,,+j,,_1+...+j2+2="s(N)=0'
For N =1, s(1) =0 and (1) = A(1), (0)z = 0.
Part ZW) If, for N € {2,3,4,...},
t(N)
(N)Z ={§Of‘.Fi+2, f,‘E{Orl}-: fi.fi+1=01 fg(N)zlr (1‘8)
Eft(N)".fU.’
km(N) | S
=10 1::40°310°210"1 - =: Z(N), m(N) €N, ky € Ny, k.. k ) €N,
then
. _ B cnmra
(N +1)yy = A1BA*2 7 B4~ 1. g4 ™M) ™ " p(y), (1.9)

Note that k; = 0 means no zero at the end of the Zeckendorf string of N and no A at
the end of the Wythoff composition of N +1. For N =0, or (0); =0, one takes (1), = A(1).
ForN=1,k = km(l) =0 and (2)y, = B(1).

Identities (1.3) and (1.4) become now special cases of this theorem. Its WZ) part
invites one to cut off, from the lefthand side of the W(NN) string, either the substring li“O, if
i, >1, and record r; =i, or to cut off j, times 0, if W(N) starts with 0, and record 0 for the
first j, entries of the {r;} sequence. This cutting process is then continued. E.g. For
W(N) = 1%0%110% (standing for (N)y = A3B2A'B%(1)), the {r;}} sequence is {3,0,1,0,0}, and
5 = s(N), the number of 0’s in W(N) (or B’s in (N)y). Therefore,
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(N=1)z=Fy 3+Fyi3,0+Fetrsror1tFeysrori+otFio3+o+140+40
=Fs+Fp+Fg+Frp+Fyy

The knowledge of the number N (which happens to be 595 is this example) is not of importance.
The converse ZW) part of the theorem’rfads for this example: Z(N —1) = 101010%1010% -, with
the {k;} sequence {3,1,2,1,1} and m(N) =5, the number of 0 —blocks in Z(N —1). Therefore,
w(N) = 1%01%1%01%1% = 1302103, or (N)y, = A®B2AB3(1). Note again that 1° means no 1

is present, corresponding to the identity map A® =id.

We now list some corollaries of this theorem (proved in section {), where our interest is
in the WZ) part.
s(N)

AWN)-1=F(V,1):= T F

y i 1.10
=il 1+2k+2?=1'";(N) (610

Using (1.6) this implies that a shift of +1 in all indices of the Zeckendorf F’s of (N —1)z
produces A(N)—1.*

s(N)
B(N)-2=F(N,2):=Y F . 1.11
(N) (N,2) k§1 2h2ks SE_ 1) (1.11)
It will be shown in section § that the generalized Zeckendorf sum
s(N)
F(Nym):=Y F 1.12
( ) kgl m+ 2k + E?=1r‘(N) ( )
satisfies a Fibonacci recursion relation
YNeEN, m=23,..,: F(N,m+1)=F(N,m)+ F(N,m—-1), (1.13a)
with inputs
F(N,0)=N-1, F(N,1)= A(N)-1. (1.138)
It is therefore a generalized Fibonacci sequence and can be written as *
F(N.m)=A(N)F_ +NF_ _1—-F_ ., (1.14)

*That a shift in the indices of the Fibonacci numbers which partition N —1 produces the
Zeckendorf representation of A(N)—1, and a further shift produces B(N)—2 is well known.
See e.g. ref. [20], p. 111.

*This generalized Fibonacci sequence is related to the sequence found in ref.[1],

534 1(N)= F(N,k)+1.
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Therefore, the alternative representation (1.12) is the Zeckendorf representation of
(1.14). Combinations like (1.14) occur in ref [3]. In fact, our theorem will later be proved

relying on the following lemma.
Lemma 1: (Carlitz, Scoville, Hoggatt, Jr. [3])

VN EN, YkeNy: AFB(N)—1=A(N)Fp ,+(N—-1)F . (1.15)
This is eq. (6.15), p. 22 of ref. [3] with a—A, b—B, n—N, j=1.

The Theorem was originally found after reduction of the following six sets of identities
which arose (after some rewriting) in the context of certain Fibonacei chains [14]. They express

the self-similarity of the underlying binary substitution sequence {h(n)}.

AFB(N) +1) - AFTHNY = Fp s, (1.16a)
BAF(B(N)+1)— BAFtYN)=F . s, (1.165)
ARB(B(N)+1)— AT 4N)=F  ,+F; 5 (1.17a)
BAFB(B(N)+1)— BA**4N)=F; 4+ F .7 (1.17b)
A¥B(AN)+1)— AFT3(N) =L . 5, (1.18q)
BA*B(A(N)+1)-BA*t3(N) =1L, _ .. (1.18b)

These identities hold for k € Ny, N € N and follow from stronger identities proved later

on as corollaries of the Theorem:

A¥(N)—1 = F(N,k), (1.19a)
B¥(N) = Fyj . + F(N,2k), (1.195)
BA¥(N)-2=F(N,k +2), (1.19¢)
A¥B(N)+1)=Fy+ Fy L 3+ F(N,k+2), (1.19d)
BA¥B(N)+1) = F3+ Fj 5+ F(N,k+4), (1.19¢)
A*B(B(N)+1)=Fy+ Fp o+ Fp s+ F(N,k+4), (1.19f)
BAFB(B(N)+1)= F3+ Fy 4+ Fi 7+ F(N,k+6), (1.199)
A¥B(A(N)+1) = Fy+ Ly 5+ F(N,k+3), (1.19h)

BAFB(A(N)+1)=Fy+ L; 5+ F(N,k+5). (1.199)
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Note that, in general, the r.h.s. is not of the canonical Zeckendorf type. However, these

*pre-Zeckendorf’ sums will be used to prove identities (1.16) ff.

All identities (1.19), and many more, follow from repeated application of the Theorem

using the following lemmas, valid for ¥ € N, m € N,,.

Lemma 2a: F(A(N),m)=F(N,m+1), (1.20a)
Lemma 2b: F(B(N),m)=F,, , ,+F(N,m+2), (1.200)
Lemma 3a: F(A(N)+1,m)=F,, .+ F(N,m+1), (1.21a)
Lemma 3b: F(B(N)+1,m)=F,, 3+ F(N,m+2), (1.21b)

In Fig. 2 the Theorem is visualized by depicting a special Fibonacci tree with labeled
nodes (corresponding to the Zeckendorf representation) and labeled edges (corresponding to the
Wythoff representation). In both cases one reads from bottom to top. The meaning of the edge

labels will be explained in section 2.

2. ZECKENDORF AND WYTHOFF REPRESENTATIONS

This section serves to fix our notation and recalls some known facts. The unique
Zeckendorf representation ( in its canonical form of the first kind) of a natural number N € N
[22, 4, 2] has been given in eq. (1.8). The second line of (1.8) is its shorthand notation, a string
of 0’s and 1’s with no adjacent 1’s. The third line in (1.8) is yet another form of the same
representation. E.g. 10%10%1. stands for 10010001, which denotes the Zeckendorf
representation for N =43, since (43),; = Fg+ Fg+ F,. Such representations can be depicted as
branches of a Fibonacci tree with nodes labeled by 0’s and 1’s. See Fig. 2 for the case of the tree
T,;. 0’ at the beginning of a path followed from the root at the top of the tree down to the
bottom have to be omitted. The leftmost branch, the path with only 0’s stands for (0); = 0.
As example, consider in Fig. 2 the path 0100100 starting at the bottom. This is shortened to
01001, and stands for the Zeckendorf string 10010 -, representing the number 10.

The fact that the branches of the n level Fibonacci tree T, generated by the rule 0—01
and 1—0, starting with the root 0 at the first level (the top), depicts the Zeckendorf
representation of the numbers 0 to F,, | ; —1 in an ordered manner is well known. Based on the
recursive structure of 7', in terms of T, _; and T, _, this can be proved by induction on the
level number n using Z, (k) =0Z,, _,(k) for k=0,1,..,F_ —1, and Z(F,_ +k)=01Z _ _,(k)
for k=0,1,..,F_,_,—1. Here Z _(N) is the unshortened Zeckendorf string for N which has
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length n pertaining to T,. FE.g. Z,(12)=0010101-. The inputs are Z,(0)=0- and
Zo(0) = -.

For the Wythoff representation one writes a natural number as composition of the
complementary Wythoff sequences {A(m)}{® and {B(m)}7° defined in (1.1). This unique
representation with (1)yy = A(1) has been studied in refs. [10, 9]. A given number N > 2 is
written as string of A’s and B’s ending with B(1), as in eq. (1.5). The same representation is
also written as li"ﬂj“---1i10j1, where A, resp. B, is replaced by 1, resp. 0. In this case the
argument (1) is implicit. The authors of refs. [10, 9] gave a ’Fibonacci composition array’ for
these Wythoff representations. (Here ’composition’ means partition). This array can be
depicted as a certain binary tree with different branch lengths and some final leaves of this tree

cut.

We prefer to work with a Fibonacci tree. For this purpose we have stretched some
branches and shortened one in order to obtain equal length for all F , branches of the
Fibonacci tree T,,. Consider Fig. 2 as example for the tree T;. The edges are labeled with
L% L,Le or R. L, resp. R, stands for left, resp. right, and will later be replaced by A, resp. B,
in the Wythoff composition of a number. The Le edges have been introduced to stretch the
branches of the array of refs. [10, 9]. If one follows a branch from bottom to top and if one
arrives at a Le edge from the right (i.e. if the last edge label was R) one does not record this
edge label (i.e. the o) and follows the branch further to the top. If one arrives at such an edge
from the left, an L is recorded. A branch starting at the bottom with a 0 node continues

upwards with an edge L.

For example, the branch ending over the number 13 is the W line in Fig. 2 reads from
bottom to top Re Re RL, or RRRL. This translates to a Wythoff composition BBBA(1).
Because A(1) =1, such compositions are brought to the unique Wythoff form by omittingA’s
acting on 1. Therefore, the correct Wythoff representation corresponding to this branch is
(13)y = BBB(1). Or, written as a string of 1’s and 0’s, W(13) = 000. The node labels along
this branch correspond to the Zeckendorf representation Z,(12) =0010101- which becomes in
the shortened form Z(12) = 10101-.

We give another example for the T; Fibonacci tree. Over number 14 in the W line of
Fig. 2 the branch LLLLLR starts. This corresponds to (14)y, = A®B(1), or W(14) = 1%0. The
node labels along this branch correspond to Z(13) = 0100000, i.e. Z(13)= 10%-. Similarly,
for 3 one has LRLLLL, or AB(1), which is 10.
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Note that in the tree T each unshortened edge sequence of a branch is equivalent to a
partition of n with only 1’s and 2’s without regard of order. In this case one replaces L, resp. R,
by 1, resp. 2. This explains why the leftmost branch has no labels L e and its last leaf is labeled
with L2, This branch corresponds to (1)y, = A(1) in the shortened form.

If the partitions of N into 1’s and 2’s are not of interest it is convenient to replace all
edge labels of the leftmost branch of the T, tree with L e labels. This is, for instance, useful to
find for the Zeckendorf tree T', with given node labels the edge labels with the help of the ZW)
part of the Theorem. For this purpose define the unshortened Wythoff strings W (N) of an
ascending edge sequence of length n— 1 corresponding to a number N € {1,2,...,,F, , ;}. These
strings are composed of L, R and e symbols. E. g. W,(8) =LReReL. For such N the
general Zeckendorf string Z(N) given in (1.8) is rewritten as unshortened T',, node string
(2N reversed = -051100%2 L0100 (M) ™ T1000(M) =1 prere
v(N)=n—m(N)— EI"E\Pkl > 1 dummy zeros have been amended in order to have string
length n. This reversed T', node sequence is read from bottom to top. According to (1.9) it
translates to the unshortened edge sequence
W (N+1)= EklRO L ige Lkm(N) 71R Sl v(N) > 2. For v(N) =1 this string
ends with the last . We used L for A, and R for B. This translation proves that a node 1 at
any level of T’ is always followed upwards by an edge K. A node 0 at some level has an
upwards edge L if it is, in the considered branch, not connected downwards to a 1 node. This
applies especially to the 0 nodes at the lowest level n of T',. If in a considered branch a 0 node
is connected downwards to a 1 node it carries an upwards e edge. This proves that the rules to
label the edges of the Zeckendorf tree T, with given node labels are exactly the ones which were

stated above in connection with Fig. 2.

3. PROOF OF THE THEOREM

The starting point is Lemma I, eq. (1.15). Next we show that the r; sequence defined in
eq. (1.7) from the Wythoff representation of N, called (N )y, given by eq. (1.5) can be defined

recursively as follows.

Definition 1: Define the sequence {(N I)W}f(:rg and the corresponding sequence {"“1}13(51)

recursively by
T
(N)w =ATFIB(N, Dy 1=0,1,..,8(N) -1 (3.1)

with Ng:= N € N, and s(N) is defined, for N > 2, by Nywy= 1. If Ng=N =1 then one puts
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s(N=1)=0.

It is clear that for N € {2,3,4,...} the sequence {r‘};(N), defined in (3.1), can be read
from (N)yy, written as in (1.5), and it is given by (1.7). The formula s(N) = 3 F _ 1j, with
the j,’s defined for N in (1.5), is obtained this way.

Proof of the WZ) part

Lemma 4: For n € {2,3,4,...} and the sequence {rl};(N) defined by (3.1),
s(N)

F((N)w,0) := F
(V) 0) kgl 2kt TF_ )

is the Zeckendorf representation of some number.

(3.2)

This is clearly true because the sequence {r;} defined in (1.7) is non-negative. Therefore

no neighboring Fibonacci numbers appear. Also, only F with k > 2 enter this sum.
Lemma 5:

Bl i By Eo = F

m’ n+4

n+m? m,n € N. (33)

This is identity (I,5) of ref. [8].

Definition 2: With N; = (N;)y given recursively by (3.1) and with R, := Yol 1(2 4+ 7}.) define
for I € {1,2,...,5(N)}
Q=Q(N, Ry = AN)Fp +(N;—1)F g _. (3.4)
Due to Lemma 1, @Q; = ARf _2B(N,)— 1.
Proposition 1: For [ € {1,2,...,s(N) -1}
Q=Fp+Q iy (3.5)

The proof uses Lemmas I and 4. With  definition  (3.1) one has
Q= AAT+ LB(N, +1)FRI + (Arl"*'lB(Ni +1)— I)FRi _1» which becomes, after using Lemma
ITwithk=r_ ,+landk=r

:FR‘+(A(NJ+1)F3+”+1+(NI+1—1)F2+r,+1)FR1+
+(A(N1+1)F2+r‘+1+(N1+1_1)F1+r[+1)FRt—1
=Fp, ¥ FpFarn PR —aFrgn, JAN g+

+(FR,F2+-,+1+FR£-1F1+rl+])(Nz+1—1)- (3.6)
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With Lemma §form =Ry n=2+7r andm=R;, n=1+4r ., this is

=Fp + AN 1) Fapr 4R T Nig1—DF 14 4R
1 41+ R 11T Ry

Proposition 2:
VN €{2,3,4,...} : (N)y—1=F((N)y0), (3.8)
with F((N)y,0) defined as in (3.2).
The proof uses Lemma I and Proposition 1. We start with I =0 in (3.1), i.e.
(N —1=(Nolw—1=A"B(N)yw-1=
by Lemma 1 and Definition 2. Now Proposition 1 can be applied iteratively for
1=1,2,...,s(N)— 1 until one reaches N’(N) = 1. Because Qa(N} = Q(l,Ra(N)) = A(l)FR’(

N)
=Fp i one finds, using also the R}, definition
3

Mw-1= il Fg, = T = F((N)y0)-

F
2k + E 5c= 177
By Lemma 4, using (N)y, = N, we now have F((N)y,,0) = (N —1)5.
This concludes the proof of the WZ) part of the Theorem.

Proof of the ZW) part

Lemma 6: The Zeckendorf representation of N, symbolized by

k
Z(N) =10 "M1..ofs10*210"1.,  with  Ne{234..}, mN)eN, kEN,
kgcoon km(N) € N, can be written as
m(N)
N),=% F . 3.9
(Mz kgl k+1+ 21k G

For the proof one counts the positions of the 1’s in the Zeckendorf string Z(N). For N =1 one
has (1) = F,, ie ky = km(l) =0.

Definition 3: Given the sequence {k,}}';(n{) which defines Z(N), define the sequence {r,}{"ﬁp by
ry=k20,r=kK-1201=23,..,m(N). (3.10)

Lemma 7:
m(N)

Ne34.}: (M=% F (3.11)

2k + E f= lri'.
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For N =1 one uses r; = k; = km(l) = 0. For the proof one replaces in each term of the sum

(3.9) the ks by the r;’s defined in (3.10).

Lemma 8: With R;:= Ejk —1(rp+2), for I=1,...,m(N) one has
m(IV)
(M)z=% Fr; (3.12)

Proof: Rewrite (N)g of (3.11) in the R, variables.

Definition 4: For [ =0,1,...,m(N)—1 define recursively with {r,}{"(N) given in (3.10)
1
My=A"tIBM; 1, My =1 (3.13)
Lemma 9:
M, = A" +1B...4 ™M), (3.14)

This is the solution to the recursion (3.13).
Definition 5: For I =1,...,m(N), M, of (3.14) and R; of Lemma 9 define
Py = P(My,Ry) == AMM)Fp + (M- 1)F g _;. (3.15)
Proposition 3:
L€ {1,2,..,m(N) =1} : Py=Fg + Py . (3.16)
The proof uses (3.13), Lemma I with k=r; ;+1 and k=r; , and Lemma § with
m=r;,,+3, n=R—landm=r; ,+2,n=R -1
Py=Fg +(AM))-1)Fp +(M—1)Fp _,
=Fp +(AM  OF, 43t My —DF,  40)Fp+
+(A(Mi+1)Fr,+1+2+(Mi+1 _1)Frl+1+1)FR‘—1
:FR,+A(MI+1)FRI+,_I+1+2+(ME+I_I)FRI+PI+1+1
=Fp,+ P41
Lemma 10:

r rm(N) m(N)
YN €1{2,3,4,...} : Mg—1=A"1B..A™MB1)-1= % Fp. (3.17)

From the definition (3.13), Lemma I with k=r;, N=M; and Definition § one has
My—1= P;. The lemma then follows after repeated application of Proposition 3 for
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1=1,2,...,m(N)—1, using the fact that, due to (3.13) and (3.15), Pm(N) =1-Fp (N) +0.
mi

Lemma 11:
r T = k -1
My = A"BA™2B..A "M)p(1) = AM1Ba*2 " B4 ™M) B)

First use definition (3.13), then rewrite the r, variable in terms of the k; ones using (3.10).
After this apply Lemma 10 and Lemma 8  The last equality in (3.18) holds because
(N)z+1=N+1 and it is written in the Wythoff representation. The statements made after

(1.9) concerning the cases N =0 and IV = 1 are obvious.
This concludes the proof of Part ZW) of the Theorem.

4. PROOF OF LEMMAS 2a, 2b, eq. (1.13), LEMMAS 3a, 3b, IDENTITIES (1.19)

AND (1.16) TO (1.18)

As corollaries to the Theorem we prove in this section the identities (1.16) to (1.18)
which were found independently as a consequence of the self-similarity of the binary Fibonacci
substitution sequence {k,} in ref. [14]. To this end we first prove the more general identities
1.19a to ). These identities involve the quantity F(N,m) which is defined in (1.12) from the
unique Wythoff representation of N, ie. (N)y given by (1.5) with the sequence
{rf}i{N)(r(N) — sequence for short) obtained from (1.7).

Proof of Lemma 2a and 2b:

These lemmas use Part WZ) of the Theorem (1.6). (1.20a), resp. (1.200), is proved by
comparing the r(A(N))—, resp. r(B(N))— sequence, with the r(N)—sequence. If N is
replaced by A(N) in (1.5) the r(A(N)) — and r(N') —sequences satisfy:

r(A(N)) = ry(N) + 1, r(A(N)) = ri(N) for k= 2,3,...,5(N).

Hence, s(A(N))=s(N). Therefore, the index of each term of the sum F(A(N),m) can be

rewritten, producing the sum for F(N,m+1). This proves Lemma 2a.
Similarly, if N is replaced by B(/N) in (1.5) one finds
r(B(N)) =0, ri(B(N)) =rp _y(N) for k = 2,3,..,8(N)+1.

Hence, s(B(N))=s(N)+1. The first term in the sum (1.12) for F(B(N),m) is F,, o The
remaining sum is, after an index-shift k—& — 1 brought to the form of F(N,m+2). This proves
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Lemma 2b.

Next we show that the Zeckendorf sum F(N,m), given by (1.12), satisfies the

generalized Fibonacci number recursion (1.13).

Proof of egs. (1.13 a,b):

(1.13a) is obvious because there N, hence the (V) —sequence, is held fixed. One only
needs the ordinary Fibonacci number recursion relation for each term of the sum F(N,m). The

inputs (1.13b) follow from the Theorem, (1.6), and (1.10) which is a consequence of Lemma 2a.
The result (1.14) then follows because F(N,m) = F(N, V)F,, + F(N,0)F,, _,."

Proof of Lemmas 3a and 3b:

From (1.14) and the well-known identity A(A(N)+1)= A*(N)+2 one finds
F(A(N)+1,m)=F(A(N),m)+2F .+ Fp _1- Applying Lemma 2a now yields Lemma Ja.

Similarly, from the well-known identity A(B(N)+1)= AB(N)+1 one finds from
(1.14) first F(B(N)+1,m)= F(B(N),m)+F,+F, _,. Applying Lemma 2b now yields

Lemma 3b.

Proof of identities (1.19):

These identities are corollaries to the WZ) part (1.6) of the Theorem. (1.19a), resp.
(1.19b), follow after successive application of (1.6) together with (1.20a), resp. (1.20b). In the
case of (1.19b) one first finds (B¥(N)—1)z = F(N,2k) + Ei-‘;(ljF“,z‘-. Then only the well-

known formula Zif: 1Faj=—1+Fy 4, hasto be used.

Egs. (1.10), resp. (1.11), are the k =1 cases of (1.19a), resp. (1.19b).

The proof of (1.19¢) just needs F(BA¥(N),0)=F,+ F(A¥(N),2) = F,+ F(N,2+k)
due to (1.20b) and (1.20a).

For the proof of (1.19d) one uses (1.6) and Lemmas 2a and 3b: F(A*(B(N)+1),0) =
F(B(N)+1,k) = F(N,k+2)+ Fp 3

*The generalized Fibonacci sequences which start with primitive Wythoff pairs [17] (A(A(k)),
B(A(k))), k=1,2,3,... are therefore F(B(k), m), for m=0,1,2,.... Hence the Wythoff array
[15] has entries W n = F(B(m),n— 1) with m,n € N. E.g.
Wi 4=F(1,3)=F3 2,0+ F34441= Fg+ Fg =26
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Similarly, (1.19¢) needs Lemmas 2b, 2a, 3b:
F(BAK(B(N)+1),0) = Fy+ F(B(N)+1,k+2) = Fy+ Fy s+ F(N,  +4).

In the same way the other identities (1.19f to i) follow. The Lucas numbers
Ly=Fp_1+Fp 4, also show up.

Note that (1.19b) is the Zeckendorf representation of B(N) iff ry #0, e for
A —numbers N. This is so because F(N,2k) starts with Fy, , , if ; = 0. Of course, F(N,m)
is always a Zeckendorf representation. For example,

(A(B(N)+1)~1-F) . 3)z = F(N,k+2).

Also, (A*B(A(N)+1) =1~ Fi , )z = Fi 5+ F(N,k+3) from (1.19h).

Proof of identities (1.16), (1.17) and (1.18):

These identities, which can be derived from the self-similarity identities obeyed by
Fibonacci chains (based on the self-similarity of the {h(n)} sequence), follow immediately from

the stronger results (1.19) by subtracting out the relevant Zeckendorf sums F(N,m).
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APPENDIX: TIHE W(N) ALGORITIIM

W(N), the Wythoff string corresponding to the Wythoff representation (N)y, of N (see
(1.5)), can be computed from the sequences {h(n)}{“r and {z(n)}{v, where
z(n) = 3% _ h(k) = A(n+1)—(n+1) counts the number of A —numbers not exceeding n.
The point is that z(A(k))=k, for k€N, and z(B(k)) = A(k), for ke N,. Therefore,
22(B(k)) = 2(2(B(k))) = k, for k€ N. (No confusion with Z(n), the Zeckendorf string for n,
should arise.) A(n), B(n), and z(n) are called a(n), b(n), and e(n), respectively, in ref [3].

Now start with some N € N. Record as first entry of the string W(N) (the leftmost
entry) a 1, resp. a 0, ifM: A(K’), resp. N = B(K’) Thus the first entry is h(%. Then continue
this procedure for N in place of N, i.e. compute 2(N), resp. zz(N), if A(N) was 1, resp. 0. etc.

Continue this process until z(.) or z%(.) becomes 1.
E.g. N =58, h(58)=1, 2(58) =36, h(36)=0, z%(36)=14, h(14)=1, 2z(14)=9, h(9) =1,
2(9) =6, h(6) =1, 2(6) =4, h(4) =1, 2(4) =3, h(3) =1, 2(3) =2, h(2) =0, z%(2) = 1. Hence
W (58) = 10111110 = 101°0, or (58); = ABA®B(1). The r(58) — sequence, defined in (1.7), is
{1,5}, and s(58) = 2. Due to the WZ) part of the theorem (57)z =Fy | +Fy = F3+ Fp.

FIG. 1 shows a structural computer program for the computation of W(N).

yes W el : o
W(1) := 71’ L =N, K =1, Hy := "7
M 2 h(L) = 1
yes no
Wy [K:K] := ‘1’ WylK:K] := *0’ ‘
K:=K+1 K:=K+1
z(L) =1 : z(z(L)) = 1
Yes no yes no
L := z(L) Li:=z(z (L))
W(N) : =Wy W(N) : =Hy
GOTO M GOTO M

FIG 1: The W(N) Algorithm
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4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
3 4 6 7 8 9% 10 11 12 13 14 15 16 17 18 19 20

FFigure 2: The Wytholf-Zeckendorf Tree (WZ),
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