[go: up one dir, main page]

login
A316548
Number of nX4 0..1 arrays with every element unequal to 0, 1, 3, 4, 7 or 8 king-move adjacent elements, with upper left element zero.
1
5, 17, 17, 42, 89, 187, 430, 1046, 2407, 5706, 13873, 33875, 82077, 200313, 492334, 1210530, 2974134, 7322441, 18060615, 44550324, 109896337, 271259825, 669857474, 1654265900, 4085631507, 10092345604, 24933058364, 61598731632, 152189008179
OFFSET
1,1
COMMENTS
Column 4 of A316552.
LINKS
FORMULA
Empirical: a(n) = 5*a(n-1) -8*a(n-2) +7*a(n-3) -3*a(n-4) -23*a(n-5) +43*a(n-6) -24*a(n-7) -4*a(n-8) +34*a(n-9) -62*a(n-10) +199*a(n-11) -107*a(n-12) -21*a(n-13) +164*a(n-14) -637*a(n-15) +244*a(n-16) -542*a(n-17) -238*a(n-18) +438*a(n-19) -167*a(n-20) +2019*a(n-21) -63*a(n-22) +1299*a(n-23) +485*a(n-24) -1233*a(n-25) +141*a(n-26) -2424*a(n-27) -1184*a(n-28) -1165*a(n-29) -738*a(n-30) +561*a(n-31) +473*a(n-32) +1408*a(n-33) +1324*a(n-34) +436*a(n-35) -20*a(n-36) -116*a(n-37) -295*a(n-38) -201*a(n-39) -152*a(n-40) -122*a(n-41) -4*a(n-42) +36*a(n-43) +20*a(n-44) +4*a(n-45) for n>48
EXAMPLE
Some solutions for n=5
..0..1..1..1. .0..0..0..0. .0..1..1..0. .0..0..0..0. .0..1..1..0
..1..1..1..1. .0..1..0..0. .1..1..1..1. .0..1..0..0. .1..1..1..1
..1..1..1..1. .0..0..0..0. .1..1..1..1. .0..0..0..0. .1..1..1..1
..1..1..1..1. .1..1..1..0. .1..1..1..1. .0..0..0..0. .1..1..1..1
..0..1..1..1. .0..1..1..1. .1..1..1..1. .0..0..0..0. .0..1..1..0
CROSSREFS
Cf. A316552.
Sequence in context: A304217 A305248 A231710 * A275629 A351974 A364935
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jul 06 2018
STATUS
approved