[go: up one dir, main page]

login
A308759
Sum of the second largest parts of the partitions of n into 4 parts.
4
0, 0, 0, 0, 1, 1, 3, 5, 10, 13, 23, 30, 46, 59, 83, 103, 141, 170, 220, 265, 334, 392, 484, 563, 680, 784, 930, 1061, 1247, 1409, 1631, 1836, 2106, 2349, 2673, 2967, 3348, 3699, 4143, 4554, 5077, 5554, 6150, 6710, 7396, 8032, 8816, 9546, 10432, 11264, 12260
OFFSET
0,7
FORMULA
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} i.
a(n) = A308775(n) - A308733(n) - A308758(n) - A308760(n).
Conjectures from Colin Barker, Jun 23 2019: (Start)
G.f.: x^4*(1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 2*x^5 + 2*x^6) / ((1 - x)^5*(1 + x)^3*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = a(n-2) + 2*a(n-3) + 2*a(n-4) - 2*a(n-5) - 3*a(n-6) - 4*a(n-7) + 4*a(n-9) + 3*a(n-10) + 2*a(n-11) - 2*a(n-12) - 2*a(n-13) - a(n-14) + a(n-16) for n>15.
(End)
EXAMPLE
Figure 1: The partitions of n into 4 parts for n = 8, 9, ..
1+1+1+9
1+1+2+8
1+1+3+7
1+1+4+6
1+1+1+8 1+1+5+5
1+1+2+7 1+2+2+7
1+1+1+7 1+1+3+6 1+2+3+6
1+1+2+6 1+1+4+5 1+2+4+5
1+1+3+5 1+2+2+6 1+3+3+5
1+1+1+6 1+1+4+4 1+2+3+5 1+3+4+4
1+1+1+5 1+1+2+5 1+2+2+5 1+2+4+4 2+2+2+6
1+1+2+4 1+1+3+4 1+2+3+4 1+3+3+4 2+2+3+5
1+1+3+3 1+2+2+4 1+3+3+3 2+2+2+5 2+2+4+4
1+2+2+3 1+2+3+3 2+2+2+4 2+2+3+4 2+3+3+4
2+2+2+2 2+2+2+3 2+2+3+3 2+3+3+3 3+3+3+3
--------------------------------------------------------------------------
n | 8 9 10 11 12 ...
--------------------------------------------------------------------------
a(n) | 10 13 23 30 46 ...
--------------------------------------------------------------------------
- Wesley Ivan Hurt, Sep 07 2019
MATHEMATICA
Table[Total[IntegerPartitions[n, {4}][[All, 2]]], {n, 0, 50}] (* Harvey P. Dale, Nov 08 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 22 2019
STATUS
approved