[go: up one dir, main page]

login
A307841
Minimum number of nontrivial Latin subrectangles in a diagonal Latin square of order n.
4
0, 0, 0, 12, 0, 51, 0, 36
OFFSET
1,4
COMMENTS
A Latin subrectangle is an m X k Latin rectangle of a Latin square of order n, 1 <= m <= n, 1 <= k <= n.
A nontrivial Latin subrectangle is an m X k Latin rectangle of a Latin square of order n, 1 < m < n, 1 < k < n.
LINKS
Eduard Vatutin, Alexey Belyshev, Natalia Nikitina, and Maxim Manzuk, Evaluation of Efficiency of Using Simple Transformations When Searching for Orthogonal Diagonal Latin Squares of Order 10, High-Performance Computing Systems and Technologies in Sci. Res., Automation of Control and Production (HPCST 2020), Communications in Comp. and Inf. Sci. book series (CCIS, Vol. 1304) Springer (2020), 127-146.
EXAMPLE
For example, the square
0 1 2 3 4 5 6
4 2 6 5 0 1 3
3 6 1 0 5 2 4
6 3 5 4 1 0 2
1 5 3 2 6 4 0
5 0 4 6 2 3 1
2 4 0 1 3 6 5
has a nontrivial Latin subrectangle
. . . . . . .
. . 6 5 0 1 3
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . 0 1 3 6 5
The total number of Latin subrectangles for this square is 2119 and the number of nontrivial Latin subrectangles is only 151.
CROSSREFS
Sequence in context: A333577 A278711 A331911 * A257949 A375664 A375680
KEYWORD
nonn,more,hard
AUTHOR
Eduard I. Vatutin, May 01 2019
EXTENSIONS
a(8) added by Eduard I. Vatutin, Oct 06 2020
STATUS
approved