[go: up one dir, main page]

login
A307740
Numbers k such that k divides lcm(tau(k), sigma(k)).
1
1, 2, 6, 12, 24, 28, 40, 84, 120, 252, 360, 496, 672, 2480, 3276, 4680, 7440, 8128, 30240, 32760, 56896, 293760, 435708, 523776, 997920, 2178540, 2618880, 8910720, 23569920, 33550336, 45532800, 64995840, 102136320, 142990848, 275890944, 436154368, 459818240
OFFSET
1,2
COMMENTS
Numbers k such that k divides A009278(k).
Conjecture: multiply-perfect numbers (A007691) are terms.
Corresponding values of lcm(tau(k), sigma(k)) / k for numbers k from this sequence: 1, 3, 2, 7, 5, 6, 9, 8, 6, 26, 13, 10, 3, 12, 28, 14, 16, 14, 4, ...
Sequence of the smallest numbers k such that lcm(tau(k), sigma(k)) / k = n for n >= 1: 1, 6, 2, 30240, 24, 28, 12, 84, 40, 496, ...
EXAMPLE
6 is in the sequence because lcm(tau(6), sigma(6)) / 6 = lcm(4, 12) / 6 = 12 / 6 = 2.
MATHEMATICA
aQ[n_]:=Divisible[LCM@@(DivisorSigma[#, n]&/@{0, 1}), n]; Select[Range[10000], aQ] (* Amiram Eldar, May 07 2019 *)
PROG
(Magma) [n: n in [1..1000000] | LCM(SumOfDivisors(n), NumberOfDivisors(n)) mod n eq 0]
(PARI) isok(n) = !(lcm(numdiv(n), sigma(n)) % n); \\ Michel Marcus, Apr 26 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Apr 26 2019
EXTENSIONS
More terms from Amiram Eldar, May 07 2019
STATUS
approved