[go: up one dir, main page]

login
A307116
A special version of Pascal's triangle where only Fibonacci numbers are permitted.
4
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 3, 1, 3, 2, 2, 1, 1, 3, 1, 5, 1, 1, 5, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 1, 1, 3, 1, 1, 1, 5, 1, 5, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1
OFFSET
0,5
COMMENTS
If the sum of the two numbers above in the triangular array is not a Fibonacci number (A000045), then a 1 is put in its place.
A307069(k) is the row number of the first instance of the k-th Fibonacci number.
EXAMPLE
The first few rows are as follows:
row 0: 1
row 1: 1 1
row 2: 1 2 1
row 3: 1 3 3 1
row 4: 1 1 1 1 1
row 5: 1 2 2 2 2 1
row 6: 1 3 1 1 1 3 1
row 7: 1 1 1 2 2 1 1 1
row 8: 1 2 2 3 1 3 2 2 1
row 9: 1 3 1 5 1 1 5 1 3 1
MATHEMATICA
With[{s = Array[Fibonacci, 12]}, Nest[Append[#, Join[{1}, Map[Total[#] /. k_ /; FreeQ[s, k] -> 1 &, Partition[#[[-1]], 2, 1]], {1}]] &, {{1}}, 12]] // Flatten (* Michael De Vlieger, Mar 28 2019 *)
PROG
(PARI) isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8));
rows(nn) = {v = [1]; print(v); if (nn == 1, return); v = [1, 1]; print(v); if (nn == 2, return); for (n=3, nn, w = vector(n); w[1] = v[1]; for (j=2, n-1, w[j] = v[j-1]+ v[j]; if (!isfib(w[j]), w[j] = 1); ); w[n] = v[n-1]; print(w); v = w; ); } \\ Michel Marcus, Mar 28 2019
CROSSREFS
Sequence in context: A180180 A034931 A248473 * A212626 A090402 A026082
KEYWORD
nonn,tabl
AUTHOR
Elliott Line, Mar 25 2019
STATUS
approved