[go: up one dir, main page]

login
A306692
The maximum number of minimal dominating sets in a tree with n vertices.
0
1, 2, 2, 4, 4, 8, 9, 16, 19, 32, 41, 64, 85, 128, 177, 256, 361, 512, 737, 1024, 1489, 2048, 3009, 4096, 6049, 8192, 12161, 16384, 24385, 32768, 48897, 65960, 97921, 134432, 196097, 272224, 392449, 551392, 785409, 1113808, 1571329, 2249920, 3143681, 4529600, 6288385, 9119680, 12578817, 18332576, 25159681, 36852608, 50323457
OFFSET
1,2
COMMENTS
0.64 < a(n)/95^(n/13) < 0.995 for all n.
LINKS
G. Rote, The maximum number of minimal dominating sets in a tree, Proc. 30th Ann. ACM-SIAM Symp. Discrete Algorithms (SODA19), San Diego, Jan. 2019, pp. 1201-1214.
CROSSREFS
Sequence in context: A183565 A222708 A324843 * A356236 A120803 A316624
KEYWORD
nonn
AUTHOR
Günter Rote, Mar 05 2019
STATUS
approved