OFFSET
0,1
COMMENTS
Ulrich Neumann found a closed form, see the "Mathematica Stack Exchange" link.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..1000 [Terms beyond 79 were computed using Ulrich Neumann's program]
Mathematica Stack Exchange, How to compute this integral with a better precision ?
FORMULA
Equals limit_{n->infinity} (A324425(n)^(1/n^3))/n^2.
EXAMPLE
0.828859579669279286697229020775103026769105755977121145244040331795...
MAPLE
evalf(exp(integrate(log(x^2 + y^2 + z^2), x = 0..1, y = 0..1, z = 0..1)), 20);
evalf(exp(integrate(-2 + 2*sqrt(y^2 + z^2) * arctan(1/sqrt(y^2 + z^2)) + log(1 + y^2 + z^2), y = 0..1, z = 0..1)), 20);
MATHEMATICA
ixr = Exp[Integrate[1/3 (Log[1 + Sec[fi]^2] + (-7 + 3 Log[1 + Sec[fi]^2]) Sec[fi]^2 + 2 (Pi - 2 ArcTan[Sec[fi]]) Sec[fi]^3), {fi, 0, Pi/4}]]; Chop[N[ixr, 120]] (* A program by Ulrich Neumann added by Vaclav Kotesovec, Mar 03 2019. The calculation takes several minutes. *)
PROG
(PARI) exp(intnum(z=0, 1 , intnum(y=0, 1, intnum(x=0, 1, log(x^2 + y^2 + z^2)))))
(PARI) exp(intnum(z=0, 1 , intnum(y=0, 1, -2 + 2*sqrt(y^2 + z^2) * atan(1/sqrt(y^2 + z^2)) + log(1 + y^2 + z^2))))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Feb 28 2019
EXTENSIONS
More terms computed by Ulrich Neumann added by Vaclav Kotesovec, Mar 03 2019
STATUS
approved