[go: up one dir, main page]

login
A306147
Expansion of e.g.f. Product_{k>=1} (1 + (exp(x)-1)^(k^2)) / (1 - (exp(x)-1)^(k^2)).
4
1, 2, 6, 26, 198, 2042, 22566, 259226, 3249798, 47156282, 799108326, 15116875226, 305203728198, 6488119430522, 146602455461286, 3557921474016026, 92563621667899398, 2554423824661976762, 74142584637465337446, 2258422219660738881626, 72255096004023644467398
OFFSET
0,2
COMMENTS
Convolution of A306082 and A306083.
LINKS
FORMULA
a(n) = Sum_{k=0..n} Stirling2(n,k) * A103265(k) * k!.
a(n) ~ n! * ((2*sqrt(2) - 1) * Zeta(3/2))^(2/3) * exp(3 * (Pi/log(2))^(1/3) * ((2*sqrt(2) - 1) * Zeta(3/2))^(2/3) * n^(1/3) / 4) / (8 * sqrt(3) * Pi^(7/6) * n^(7/6) * (log(2))^(n - 1/6)).
MATHEMATICA
nmax = 20; CoefficientList[Series[Product[(1 + (Exp[x] - 1)^(k^2)) / (1 - (Exp[x] - 1)^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jun 23 2018
STATUS
approved