[go: up one dir, main page]

login
A305624
Number of chiral pairs of rows of n colors with exactly 4 different colors.
2
0, 0, 0, 12, 120, 780, 4188, 20400, 93120, 409140, 1748220, 7337232, 30386160, 124696740, 508250988, 2061566400, 8331954240, 33585590580, 135115594140, 542784981552, 2178107091600, 8733341736900, 34996103558988, 140172672276000, 561255446475360, 2246716252964820, 8991948337723260, 35983044114659472, 143977928423467440, 576048972752188260, 2304607666801990188, 9219666007300387200, 36882370043723748480
OFFSET
1,4
COMMENTS
If the row is achiral, i.e., the same as its reverse, we ignore it. If different from its reverse, we count it and its reverse as a chiral pair.
FORMULA
a(n) = (k!/2) * (S2(n,k) - S2(ceiling(n/2),k)), with k=4 colors used and where S2(n,k) is the Stirling subset number A008277.
a(n) = (A000919(n) - A056455(n)) / 2.
a(n) = A000919(n) - A056311(n) = A056311(n) - A056455(n).
G.f.: -(k!/2) * (x^(2k-1) + x^(2k)) / Product_{j=1..k} (1 - j*x^2) + (k!/2) * x^k / Product_{j=1..k} (1 - j*x) with k=4 colors used.
EXAMPLE
For a(4) = 12, the chiral pairs are the 4! = 24 permutations of ABCD, each paired with its reverse.
MATHEMATICA
k=4; Table[(k!/2) (StirlingS2[n, k] - StirlingS2[Ceiling[n/2], k]), {n, 1, 40}]
PROG
(PARI) a(n) = my(k=4); (k!/2) * (stirling(n, k, 2) - stirling(ceil(n/2), k, 2)); \\ Michel Marcus, Jun 07 2018
CROSSREFS
Fourth column of A305622.
A056455(n) is number of achiral rows of n colors with exactly 4 different colors.
Sequence in context: A001816 A354697 A133386 * A056320 A056311 A009050
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Jun 06 2018
STATUS
approved