[go: up one dir, main page]

login
A305384
Square array read by antidiagonals: T(i,j) = Sprague-Grundy function for position (i,j) in the "E" variant of Wythoff's game.
2
0, 1, 1, 2, 2, 2, 3, 0, 0, 3, 4, 4, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 3, 1, 6, 1, 3, 6, 7, 7, 6, 7, 7, 6, 7, 7, 8, 8, 8, 0, 8, 0, 8, 8, 8, 9, 6, 4, 1, 9, 9, 1, 4, 6, 9, 10, 10, 9, 2, 10, 10, 10, 2, 9, 10, 10, 11, 11, 11, 10, 0, 11, 11, 0, 10, 11, 11, 11, 12, 9
OFFSET
0,4
LINKS
Nhan Bao Ho, Two variants of Wythoff's game preserving its P-positions, Journal of Combinatorial Theory, Series A, Volume 119, Issue 6, August 2012, pp. 1302-1314.
EXAMPLE
The first few antidiagonals are:
0,
1,1,
2,2,2,
3,0,0,3,
4,4,3,4,4,
5,5,5,5,5,5,
6,3,1,6,1,3,6,
7,7,6,7,7,6,7,7,
8,8,8,0,8,0,8,8,8,
...
The square array begins:
...
9.. 9 10 11 12 2 1 15 16 17 18
8.. 8 6 9 10 11 13 14 15 16 17
7.. 7 8 4 2 0 12 13 14 15 16
6.. 6 7 8 1 10 11 12 13 14 15
5.. 5 3 6 0 9 10 11 12 13 1
4.. 4 5 1 7 8 9 10 0 11 2
3.. 3 4 5 6 7 0 1 2 10 12
2.. 2 0 3 5 1 6 8 4 9 11
1.. 1 2 0 4 5 3 7 8 6 10
0.. 0 1 2 3 4 5 6 7 8 9
a/b 0 1 2 3 4 5 6 7 8 9
CROSSREFS
Cf. A305383.
Sequence in context: A004481 A307296 A004489 * A112599 A347905 A308119
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jun 21 2018
EXTENSIONS
More terms from Robert Price, Jul 12 2018
STATUS
approved