OFFSET
1,3
COMMENTS
Two parts are coprime if they have no common divisor greater than 1. For partitions of length 1 note that (1) is coprime but (x) is not coprime for x > 1.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..500
FORMULA
EXAMPLE
The a(6) = 7 integer partitions of 6 whose distinct parts are pairwise coprime are (51), (411), (321), (3111), (2211), (21111), (111111).
MATHEMATICA
Table[Select[IntegerPartitions[n], CoprimeQ@@Union[#]&]//Length, {n, 20}]
PROG
(PARI)
lista(nn)={local(Cache=Map());
my(excl=vector(nn, n, sum(i=1, n-1, if(gcd(i, n)>1, 2^(n-i)))));
my(c(n, m, b)=
if(n==0, 1,
while(m>n || bittest(b, 0), m--; b>>=1);
my(hk=[n, m, b], z);
if(!mapisdefined(Cache, hk, &z),
z = if(m, self()(n, m-1, b>>1) + self()(n-m, m, bitor(b, excl[m])), 0);
mapput(Cache, hk, z)); z));
my(a(n)=c(n, n, 0) + 1 - numdiv(n));
for(n=1, nn, print1(a(n), ", "))
} \\ Andrew Howroyd, Nov 02 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 17 2018
STATUS
approved