[go: up one dir, main page]

login
A304288
Denominators a(n) of the fractions Sum_{n>=1} {n/a(n)} = 1/a(1) + 2/a(2) + 3/a(3) + ... such that the sum has the concatenation of these denominators as decimal part. Case a(1) = 3.
26
3, 64, 9122, 247449223, 351840295262110531, 628514983855026936648291640964480216
OFFSET
1,1
COMMENTS
It appears that fractions of this kind exist only for a(1) equal to 3 (this sequence), 10 (A304289), 11 (A305661), 14 (A305662), and 31 (A305663).
a(7) has 73 digits. - Giovanni Resta, Jun 08 2018
EXAMPLE
1/3 = 0.333...
1/3 + 2/64 = 0.364583...
1/3 + 2/64 + 3/9122 = 0.3649122085...
The sum is 0.3 64 9122 ...
MAPLE
P:=proc(q, h) local a, b, d, n, t; a:=1/h; b:=ilog10(h)+1; d:=h; print(d);
t:=2; for n from 1 to q do if trunc(evalf(a+t/n, 100)*10^(b+ilog10(n)+1))=d*10^(ilog10(n)+1)+n then b:=b+ilog10(n)+1; d:=d*10^(ilog10(n)+1)+n; a:=a+t/n; t:=t+1; print(n); fi; od; end: P(10^20, 3);
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Jun 08 2018
EXTENSIONS
a(4)-a(6) from Giovanni Resta, Jun 08 2018
STATUS
approved