OFFSET
0,7
COMMENTS
First differences of A007294.
Number of partitions of n into triangular numbers > 1.
FORMULA
G.f.: 1 + Sum_{j>=2} x^(j*(j+1)/2)/Product_{k=2..j} (1 - x^(k*(k+1)/2)).
a(n) ~ exp(3 * Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3) / 2) * Zeta(3/2)^(5/3) / (2^(9/2) * sqrt(3) * Pi^(2/3) * n^(13/6)). - Vaclav Kotesovec, May 04 2018
MATHEMATICA
nmax = 75; CoefficientList[Series[Product[1/(1 - x^(k (k + 1)/2)), {k, 2, nmax}], {x, 0, nmax}], x]
nmax = 75; CoefficientList[Series[1 + Sum[x^(j (j + 1)/2)/Product[(1 - x^(k (k + 1)/2)), {k, 2, j}], {j, 2, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 02 2018
STATUS
approved