[go: up one dir, main page]

login
A303710
Number of factorizations of numbers that are not perfect powers using only numbers that are not perfect powers.
6
1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 2, 3, 1, 5, 1, 2, 2, 2, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 3, 2, 5, 1, 3, 2, 5, 1, 8, 1, 2, 3, 3, 2, 5, 1, 5, 2, 1, 9, 2, 2, 2, 4, 1, 9, 2, 3, 2, 2, 2, 6, 1, 3, 3
OFFSET
1,4
COMMENTS
Note that a factorization of a number that is not a perfect power (A007916) is always itself aperiodic, meaning the multiplicities of its factors are relatively prime.
EXAMPLE
The a(19) = 4 factorizations of 24 are (2*2*2*3), (2*2*6), (2*12), (24).
The a(23) = 5 factorizations of 30 are (2*3*5), (2*15), (3*10), (5*6), (30).
MATHEMATICA
radQ[n_] := And[n > 1, GCD@@FactorInteger[n][[All, 2]] === 1]; facsr[n_] := If[n <= 1, {{}}, Join@@Table[Map[Prepend[#, d] &, Select[facsr[n/d], Min@@# >= d &]], {d, Select[Divisors[n], radQ]}]]; Table[Length[facsr[n]], {n, Select[Range[100], radQ]}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 29 2018
STATUS
approved