[go: up one dir, main page]

login
A303658
Decimal expansion of the alternating sum of the reciprocals of the triangular numbers.
2
7, 7, 2, 5, 8, 8, 7, 2, 2, 2, 3, 9, 7, 8, 1, 2, 3, 7, 6, 6, 8, 9, 2, 8, 4, 8, 5, 8, 3, 2, 7, 0, 6, 2, 7, 2, 3, 0, 2, 0, 0, 0, 5, 3, 7, 4, 4, 1, 0, 2, 1, 0, 1, 6, 4, 8, 2, 7, 2, 0, 0, 3, 7, 9, 7, 3, 5, 7, 4, 4, 8, 7, 8, 7, 8, 7, 7, 8, 8, 6, 2, 4, 2, 3, 4, 5, 3
OFFSET
0,1
FORMULA
Equals log(16/e^2) = log(16) - 2.
Equals Sum_{k>=0} 1/((k+2)*2^k) = Sum_{k>=2} 1/A057711(k). - Amiram Eldar, Aug 19 2020
EXAMPLE
1/1 - 1/3 + 1/6 - 1/10 + 1/15 - 1/21 + ... = 0.77258872223978123766892848583270627230200053744102...
MATHEMATICA
RealDigits[4*Log[2] - 2, 10, 100][[1]] (* Amiram Eldar, Aug 19 2020 *)
RealDigits[Log[16]-2, 10, 120][[1]] (* Harvey P. Dale, Apr 30 2022 *)
PROG
(PARI) sumalt(n=1, (-1)^(n+1)*2/(n*(n+1))) \\ Michel Marcus, Apr 28 2018
(PARI) log(16)-2 \\ Altug Alkan, May 07 2018
CROSSREFS
Cf. A000217 (triangular numbers), A057711.
Apart from leading digit the same as A016639 (log(16)).
Sequence in context: A372774 A255272 A335929 * A169812 A195907 A126584
KEYWORD
nonn,cons
AUTHOR
Jon E. Schoenfield, Apr 28 2018
STATUS
approved