[go: up one dir, main page]

login
A303586
Number of partitions of [n] that contain no isolated singletons.
4
1, 0, 1, 1, 2, 3, 6, 11, 23, 47, 103, 226, 518, 1200, 2867, 6946, 17234, 43393, 111419, 290242, 768901, 2065172, 5630083, 15549403, 43527487, 123343911, 353864422, 1026935904, 3014535166, 8945274505, 26829206798, 81293234754, 248805520401, 768882019073, 2398686176048, 7552071250781
OFFSET
0,5
COMMENTS
a(n) appears to be the same as A211694(n-2). - Georg Fischer, Oct 09 2018
LINKS
A. O. Munagi, Set partitions with isolated singletons, Am. Math. Monthly 125 (2018), 447-452.
MAPLE
f:=proc(n) local j;
add(combinat:-bell(j-1)*binomial(n-j-1, j-1), j=0..floor(n/2));
end;
[seq(f(n), n=0..100)];
MATHEMATICA
a[n_] := If[n == 0, 1, Sum[BellB[j-1]*Binomial[n-j-1, j-1], {j, 1, Floor[n/2]}]];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 17 2024, after Maple code *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 19 2018
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, May 21 2023
STATUS
approved