[go: up one dir, main page]

login
A303182
T(n,k) = Number of n X k 0..1 arrays with every element equal to 0, 1, 2, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
12
1, 2, 2, 4, 8, 4, 8, 17, 25, 8, 16, 37, 31, 81, 16, 32, 78, 72, 135, 264, 32, 64, 169, 170, 297, 547, 857, 64, 128, 361, 382, 931, 1302, 1938, 2785, 128, 256, 778, 873, 2569, 5613, 5050, 6965, 9050, 256, 512, 1673, 2013, 6668, 24751, 29124, 20188, 25953, 29407, 512
OFFSET
1,2
COMMENTS
Table starts
...1.....2.....4......8......16........32.........64.........128..........256
...2.....8....17.....37......78.......169........361.........778.........1673
...4....25....31.....72.....170.......382........873........2013.........4618
...8....81...135....297.....931......2569.......6668.......17934........48674
..16...264...547...1302....5613.....24751......88153......325770......1253442
..32...857..1938...5050...29124....218980....1064399.....5463686.....31140302
..64..2785..6965..20188..148501...1803435...11901719....82524101....673749714
.128..9050.25953..81926..786247..15559135..141429948..1341217380..15951682785
.256.29407.95602.329957.4126586.133939941.1665576584.21624053966.375045359077
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1).
k=2: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4).
k=3: [order 13].
k=4: [order 31] for n>33.
k=5: [order 66] for n>73.
Empirical for row n:
n=1: a(n) = 2*a(n-1).
n=2: a(n) = 3*a(n-1) +a(n-2) -6*a(n-3) -2*a(n-4) +4*a(n-5) for n>6.
n=3: a(n) = 3*a(n-1) -2*a(n-2) +2*a(n-3) -3*a(n-4) +a(n-5) for n>9.
n=4: [order 17] for n>22.
n=5: [order 34] for n>40.
n=6: [order 84] for n>90.
EXAMPLE
Some solutions for n=5, k=4
..0..1..0..1. .0..0..1..0. .0..1..0..1. .0..1..0..1. .0..0..1..1
..0..1..0..1. .0..1..1..0. .1..0..0..1. .0..0..0..1. .1..0..1..0
..0..1..1..1. .0..1..0..0. .0..1..0..1. .0..1..1..1. .1..0..0..0
..0..1..0..0. .0..1..0..1. .0..0..0..1. .0..1..0..1. .1..0..1..1
..0..1..0..1. .0..1..0..0. .1..1..0..1. .0..1..0..0. .1..0..1..0
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A240478.
Row 1 is A000079(n-1).
Row 2 is A281470.
Sequence in context: A281469 A302623 A302415 * A302322 A303016 A302820
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 19 2018
STATUS
approved