OFFSET
0,2
COMMENTS
In general, for h>=1, if g.f. = Product_{k>=1} (1 + (h^2*x)^k)^(1/h), then a(n) ~ h^(2*n) * exp(Pi*sqrt(n/(3*h))) / (2^((3*h + 1)/(2*h)) * 3^(1/4) * h^(1/4) * n^(3/4)).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
FORMULA
a(n) ~ 3^(2*n - 1/2) * exp(sqrt(n)*Pi/3) / (2^(5/3) * n^(3/4)).
MATHEMATICA
CoefficientList[Series[(QPochhammer[-1, 9*x]/2)^(1/3), {x, 0, 20}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Apr 18 2018
STATUS
approved