[go: up one dir, main page]

login
A303007
Expansion of (1-240*x)^(1/8).
4
1, -30, -3150, -472500, -81506250, -15160162500, -2956231687500, -595469525625000, -122815589660156250, -25791273828632812500, -5493541325498789062500, -1183608449221102734375000, -257434837705589844726562500, -56437637496994696728515625000
OFFSET
0,2
LINKS
FORMULA
a(n) = 30^n/n! * Product_{k=0..n-1} (8*k - 1) for n > 0.
a(n) = 15^n * A301271(n).
a(n) ~ -2^(4*n - 3) * 15^n / (Gamma(7/8) * n^(9/8)). - Vaclav Kotesovec, Jun 16 2018
D-finite with recurrence: n*a(n) +30*(-8*n+9)*a(n-1)=0. - R. J. Mathar, Jan 20 2020
MATHEMATICA
CoefficientList[Series[Surd[1-240x, 8], {x, 0, 20}], x] (* Harvey P. Dale, Aug 29 2024 *)
PROG
(PARI) N=20; x='x+O('x^N); Vec((1-240*x)^(1/8))
CROSSREFS
(1-b*x)^(1/A003557(b)): A002420 (b=4), A004984 (b=8), A004990 (b=9), (-1)^n * A108735 (b=12), A301271 (b=16), (-1)^n * A108733 (b=18), A049393 (b=25), A004996 (b=36), this sequence (b=240), A303055 (b=504), A305886 (b=1728).
Sequence in context: A230591 A352182 A001459 * A209788 A265855 A289395
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 15 2018
STATUS
approved