[go: up one dir, main page]

login
A302934
Highly composite deficient numbers: deficient numbers k whose number of divisors d(k) > d(m) for all deficient numbers m < k.
3
1, 2, 4, 8, 16, 32, 64, 105, 225, 315, 1155, 2475, 4455, 8775, 26325, 27027, 63063, 106029, 247401, 693693, 829521, 969969, 2241603, 3741309, 7894341, 8083075, 32569173, 33671781, 37182145, 56581525, 146791359, 185910725, 622396775, 929553625, 1301375075
OFFSET
1,2
COMMENTS
The record numbers of divisors are 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 16, 18, 20, 24, 30, 32, 36, 40, 48, 54, 60, 64, 72, 80, 84, 96, 108, 112, 128, 144, 160, 192, 216, 256, 288, ...
MATHEMATICA
a={}; dm=0; Do[ If[DivisorSigma[1, n]>=2n, Continue[]]; d=DivisorSigma[0, n]; If[d>dm, dm=d; AppendTo[a, n]], {n, 1, 1000000}]; a
PROG
(PARI) lista(nn) = {my(maxd = 0); for (n=1, nn, if ((sigma(n) < 2*n) && (numdiv(n) > maxd), maxd = numdiv(n); print1(n, ", "); ); ); } \\ Michel Marcus, Apr 17 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Apr 16 2018
STATUS
approved