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Abstract

In this paper we give an alternative and more intuitive proof

to one of two classic inequalities given by Diaconis and Gra-
ham in 1977. The inequality involves three metrics on the
symmetric group, i.., the set of all permutations of the first n
positive integers. Our technique for the proof of the inequal-
ity allows us to resolve an open problem posed in that paper:
When does equality hold? It also allows us to estimate how
often equality holds. In addition, our technique can sometimes
be applied for the proof of other inequalities between metrics
or pseudo-metrics on the symmetric group.
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1 Imtroduction

The distance between any two permutations a and & in the sym-
metric group S, on n elements (that is, the set of all permutations
of the set {1,...,n}) can be measured by right-invariant metrics
or pseudo-metrics introduced and studied by Diaconis and Graham
(1977), Cohen and Deza (1980), Estivill-Castro (1991}, and Estivill-
Castro et al. (1993). The distance between a permutation a in S
and the identity id = (1,2,...,n) can be considered as a measure
of disorder or disarray of @ and quantifies the deviation of the per-
rutation o from the (sorted in ascending way) identity id. Properly
standardized, a distance between two permutations a and bin S, can
be transformed into a (non-parametric) rank correlation coefficient
between o and b that takes values in the interval {—1,1}.

In this paper, we give an alternative and more intuitive proof to
one of two classic inequalities given by Diaconis and Graham (1977).
The inequality involves three metrics on the symmetric group — see
the left tesult in (5) below. Our technique for the proof of the in-
equlity allows us to resolve an open problem posed in that paper:
When does equality hold? It also allows us to estimate how often
equality holds. Even more, our technique can sometimes be applied
for the proof of other inequalities.

We begin the paper with a general introduction to pseudo-metrics
and measures of disorder on the symmetric group Sn. We continue
with a discussion of the properties of four such psendo-metrics, and
review several inequalities that relate them. In doing so, we provide
alternative proofs to some of these inequalities.

A pseudo-metric sequence is a list of functions
(dp : Sn X S, = R|n € IN*)
satisfying the following properties:

1 For all n € IN* and a,b € Sn, dn(a,b) > 0, and equality holds
if and only if a = b.

5. Forall n € IN* and a,b € Sn, dn{a,b) = dn(b,a).
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3. There is a constant M > 0 such that for all n € IN* and all
a,b,c € Sy,

dn{a,b) < M(dn(a,c) + dn(c,b)].

In the above definition, we denote by IR the set of real numbers
and by IN* the set of positive integers. If a pseudo-metric sequence
satisfies property 3 with M = 1, then each function d, is a meiric
on Sy, and the last property is the usual triangle inequality.

If a pseudo-metric sequence (d, : S; x S, — Rin € IN*) satisfies

the property
dn{aoc) =d(boc)

for all n € IN* and a,b,c € S, then it is called righi-invariant. Here
o denotes composition between permutations in the same symmetric
group. Right-invariance implies that

dn(a,b) = d(aob™l,id) = d(id,boa™) (1)

for n € IN* and a,b € S,. In particular, d,(e,id) = d.(a71,id).
(Here o~ is the inverse permutation of a in S,.) Because of these
properties, by abusing notation, we define the induced measures of
disorder sequence (d,, : S, — IR|n € IN*) by

dn(a} = dn(a,id)
for n € IN* and a € .5,,.
For all those n € IN* for which
max d,, = max{d,{a,b}|a, b€ S} >0,

as suggested by Diaconis and Graham (1977), one can define an
associated (non-parametric) rank correlation coefficient r, : 5, x
Sp = [—1,1] as follows:

_ 1 _ 2da(a,b)
ra(a,b) =1 axd (a,b € Sy).

The correlation coefficient equals 1 if and only if a = b, and —1 if
and only if d,(a, b) = maxd,.
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Over the years several pseudo-metrics, metrics, and measures of
disorder or disarray on the symmetric group S, have been proposed:
see, for example, (2], (3}, (5], [6], [7], [10], {11], (12], [16], [17], and [18].
In this paper, we work with four of these that are studied in Diaconis
and Graham (1977). If a = (a1,a3,...,a5) and b = (b, bs,...,b,)
are permutations in 5,, we let:

(a) I.{a,b) = the minimum number of pairwise adjacent trans-
positions! required to bring a~! into 5=

(b) EX,(a,b) = the minimum number of transpositions needed
to bring a into b;
(¢) Dnla,b) = 3511 las — bif;
(d) $Qunla,b) =37 (a; — b;)2
The first three functions are metrics {and thus pseudo-metrics) on
Sy, while the last one is only a pseudo-metric with constant M = 2 in
- property 3. These pseudo-metrics induce the following measures of
disorder on S,: For a € 8y, I(a) is the number of inversions in a, i.e.,
the number of pairs of integers (a;,a;) such that 1 < i < j < n and
a; > aj; £Xn(e) is the smallest number of exchanges (transpositions)
of elements in a needed to leave it sorted; D, (a) = 37, | — a;]; and
SQn(a) = 3771 (7 — a;)%. A classical result by Cayley (see [1] and
[17, Ex. 5.2.2-2, pp. 134 and 628]) states that EX,,(a) equals n minus
the number of cycles in the permutation a.

Because of equations (1) (that follow from right-invariance), for
the rest of the paper, we concentrate only on the measures of disorder
that the above four psendo-metrics induce on S,. For all a € Sn,
In(a) < n{n —1)/2 and SQx(a) < (n — )n(n + 1)/3, and each of
these Inequalities holds as equality if and only if @ = (n,n—1,..., 1).
In addition, for all a € S,, Dr(a) < {n?/2] (where |z] is the greatest
integer less than or equal to z), and equality holds if and only if a; >
nf2fori=1,2,...,n/2 when n is even; and either a; > (n+1)/2 for
i=12,...,(n—-1)/20ra; > (n+1)/2fori = 1,...,(n+1)/2 when
n is odd-see [7, p. 266] or [14, Lemma 2.4]. Finally, EX,(a) < n-1
and equality holds if and only if a has only one cycle {(and there are
(n — 1)! permutations in S, with exactly one cycle).

IThat is, transpositions consisting of adjacent elements.
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There are several inequalities among these measures of disorder,
and each such inequality can be transformed into an inequality in-
volving corresponding pseudo-metrics using equations (1)2. In addi-
tion to the obvious EX,(a) < In(a), we mention, for example, two
inequalities stated in 1984 by Ecker [9]:

2Ih(a) £ 8Qn{a) < 2(n ~ 1}, (a). (2)
Daniels [4] proved the following inequalities:

(n-1)(n—2)
6

Durbin and Stuart (see {8 or [16, pp. 13 and 29-32]) proved the
following classic inequality:

nln(a) — = < SQu(a) < nla(a). (3)

SQu(a) > gfn(a) (1 . %—‘fl) .

The following two inequalities are found in the last section of a paper
by Diaconis and Graham [7]:

S$Qn(a) < Dy(a) £ min[SQn(a), (n SQa(a))*/?). (4)

n—1
In [7], Diaconis and Graham prove the following two inequalities:
In(a) + EX,(a) € Dy(a) < 2I,(a). (5)

‘The proof of the right inequality is quite easy, but the proof of the
left one is quite involved. In this paper we give an alternative and
more intuitive proof of the left inequality, and give some necessary
and sufficient conditions for equality to hold. According to Diaconis
and Graham [7, p. 268] and to the best of our knowledge, this is an
open problem.

In Section 2 of the paper we introduce the inversion list ((\;, i)
i=1,...,n) of a permutation a € 8, and give another proof of the
right inequality in (5) (which of course was proved by Diaconis and

*For example, the inequality EX.(a) < I,(a) becomes EX.(a,b) < I, (a,b)
for a,b & &n.
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Graham [7] in an equally easy way). In Section 3, we then examine
what happens to the inversion list and the above measures of disorder
when we switch two elements of a that form an inversion and belong
to the same cycle. We show that {under certain conditions) the value
of the quantity

Kn(a) := Dr(a) — In(a) — EXn(a)

decreases or stays the same when we switch two such elements of a.
We use this fact to give an alternative proof to the left inequality in
(5), and give some necessary and sufficient conditions for equality to
Hold (see Section 4). The paper concludes with Section 5, where we
give some insight on how often equality holds in the left Diaconis-

Graham inequality.

For n € IN* and a € Sy, and integers ¢ and 7 with 1 <4 < j < n,
define 8(4,7) to be 1 if (a™1); < (e71);, and 0 otherwise. Here a™!
is the inverse permutation of permutation a. In other words, (%, j)
is 1 if rank j preceeds rank ¢ in a. Inequalities (2) both follow from
the following Durbin and Stuart’s results (see (8] and [91}

L{a)= S 8(;,5) and SQa(e)= D> 2(j—s(i,3), (6)
1<i<j<n 1<i<i<n

and the fact that 1 < j — i <n—1 whenever 1 <7 < j < n. We see

from the second equation in (6) that SQ(a) can be thought as the

number of “weighted” inversions, where each inversion is weighted

by twice the distance between the integers comprising the inversion.

Even though inequalities (2} both follow from (6), to illustrate
the techniques of this paper, we derive the left inequality in (2) by
proving that (under certain conditions) the value of the quantity

Qn(a) := SQn(a) — 2I,(a)

decreases or stays the same when we switch two elements of a that
form an inversion and belong to the same cycle. Note that the tech-
nique of this paper is not always successful. For example, it cannot
be used to prove either of Daniels’ inequalities in (3) because the
value of the quantity

Ry (a) := nln(a) ~ $Qn(a)
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sometimes increases when we switch two elements of ¢ that form an
inversion and belong to the same cycle.

2 The inversion list of a permutation

Let n € IN* and a € Sy, and for i = 1,2,...,n, define A; = Ai(a) to
be the number of integers a; such that 1 < [ < ¢ and a; < a, and
1 = pi{a) to be the number of integers an such that ¢ < m < n and
am < a;- Obviously, 0< X €i~1,0< u; < — ¢, and

I.(a) =é Z(J\i + pi) = Z)\i = Z i (7)
i=1 i=1 i=1

To the left of a; there are i — 1 — A; integers q; with 1 <[ < 7 and
a; < a;. Since the total number of at’s in a less than a; is a; — 1, we
have p; + (2~ 1— A;) = a; — 1, which implies

i — A= o; — 1 (8)

It follows that

Do(a) = fm=X| and SQn(a) =) (m—A)> (9)
i=1 i=1
Since |u; — A;| £ i + A; (with equality if and only if A = 0), we
immediately get

Dn(a) < 2In(a) and SQn(a) < SQF(a) :=> (mi+X)% (10)
=1

The first inequality is the right inequality in (5) due to Diaconis and
Graham [7]. Obviously, in each of the above inequalities, equality
holds if and only if u;A; = 0 for all ¢ € {1,...,n}. Equalities and
inequalities (7)-(10), albeit simple, will be used extensively in the
rest of the paper. We call ({A;, ;) 14 = 1,...,n) the inversion list
of the permutation a.

We say that a € S, has a 3-inversion if there are three elements
ai,aj,ar such that 1 < i < j <k <nanda; > q; > ar Us
ing the notation in the previous paragraph, each of the inequalities

281



(10) becomes an equality if and only if a has no 3-inversions®. This
claim (for the first inequality) was made by Diaconis and Graham [7].
They state that Knuth {17, Section 5.1.4] notes that the number of
permutations in S, with no 3-inversions is equal to the n*? Catalan

number 1 om 1
i)
Cp = .
n+1 ( n )

The finite sequence (Aq, ..., An) is a permutation of the inversion
table (by,...,b,) of a, which was discussed by Hall [15] and Knuth
[17, Section 5.1.1]. The latter is obtained by letting bz be the number
of elements in a to the left of k that are greater than k. In exercises
5.1.1-7 and 8, Knuth [17] introduces another table, (cy,...,¢c,)}, by
letting ¢ be the number of elements in e to the right of & that
are less than k. The finite sequence (u1,...,4,) is a permutation
of the finite sequence (ci,...,c,). Actually, in the same exercise
he introduces the finite sequences of Ag’s and up’s using different
notation than ours. He notes that A\ = bo, and up = ¢, for k =
1,...,n (where a; is the kth element of permutation a € S,, used in
this section). In the solution to exercise 5.1.1-7 (see [17, p. 592]) he
states that the c inversion table was discussed by Rodrigues [20] and
the u inversion table by Rothe in 1800. (We do not use the inversion
tables (b1,...,b,) and (e;,...,¢,) in this paper, and the quantities
b;; in the next section have different meaning.)

Since |g; — A| < pi + A < n—1, we have
s = Ml < (n = )| — M

for i = 1,2,...,n. We immediately get from (9) that SQ.(a) <
(n —1)Dxn(a), which is the left inequality in (4). Equality here holds
if and only ifa = (1,2,...,n) ora=(n,2,3,...,n—1,1). From the
Diaconis-Graham inequality D,(a) < 2I,{a) we then get SQ,(a) <
2(n — 1)I.(a), which is the right inequality in (2). In the latter
inequality, equality holds if and only ifa = (1,2,...,n) (unless n = 2
in which case equality holds iff a = (1,2) or a = (2,1)).

*Permutations with no 3-inversions are called permutations that avoid the
pattern “321.” See, for example, [13], [19] and [21].
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The quantity SQ; (a) introduced in (10) is obviously nonnegative,
and equals zero if and only if e = (1,2,...,n). Also

SQi(a) < n(n—1)?

for all a € Sy, and equality holds if and only if a = (n,n —1,...,1).
Tt would be interesting to find more inequalities between SQ;, SQ,
and I, (in addition to the second inequality in (10)).

The measure of disorder S@Q} arises from a right-invariant pseudo-
metric
SQ} 8, x Sy = IR;

" which satisfies property 3 with M = 2, as follows: For n € IN* and
a, h € S, {by abusing notation) define

,ui-(a,, h) = #{j]az > a4 and h; < h.j};

Xila, h) = #{jla; < ajand h; > h;} = pi(h,a);
and .
SQF (@ k) = (s, ) + Mela, )
i=1

Note that p;(a,id) = pi(e) and Ai(e,id) = A;(a), where p;(a) and
Ai(a) are as defined at the beginning of the section. It follows that
SQ; (a) = SQ; {(a,id). Finally, note that

wilo, B)~Nila, k) = ai—h; and  Ly(a,h) = -;- S (uila, b+ i(a, b)),
=1

3 An analysis of the first Diaconis-Graham
inequality

Let n € IN* and a € S,, and fix integers 7 and j such that 1 <
i < j < n and a; > a; (i.e., the pair {a;,a;) is an inversion in list
a). Define @ € Sy, to be the finite sequence obtained from a after
exchanging a; with a;. Let by be the number of integers k& with
i <k < jand a; >ar > a;. In other words, b;; is the number of
3-inversions beginning with o; and ending with a;. Since there are
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J —t— 1 numbers between ¢ and 7 and a; — a; — 1 numbers between
a; and a;, we have

bz'j < min(a,; — aj,j — 2) - 1. (11)

Some of the results in the following lemma are probably well-
known. For example, part (i) is due to Knuth (17).

Lemma 3.1 (i) I,(a) = I(a)— (2b;;+1) > In(a)—2min(e;—a;, j—
i) + 1.

(i) SQn(@) = SQr(a) — 2(5 — z')(ai — a;).
(iti) Dn(@) = Dn(a) + 1 = as| + [i ~ a;] = }i = as] — |5 — a4].

Proof: (i) The first equality follows from the statement and
solution of problem #5.2.2-1 (pp. 134 and 628) in Knuth {17]. The
inequality follows from (11).

(ii) The equality follows from
SQu(8) = 5Qn(a) + (0 = 5)" + (a5 — 2 = (o1 = 1) — (ag — )2

(iil) It follows from the definition of . 3

Corollary 3.2 If either i < a; <0; Sjora; i< j<ay, then:

Dn(@) = Dr(a) = —2min(a; — a;,J —1).

Proof: Assume first 1 < a; < a; < j. In this case min(a; —
aj,j —~ 1) = a; — a;. It follows from Lemma’3.1, part (iii), that

Dn(@) = Du(a) = (7~ @)+ (a; —4) — (a: —4) — (5 — aj) = —2(as ~ ;).
The case a; < i < j < a; can be proven in a similar fashion. O

Given n € IN*, for every permutation h € Sy, define

Kn(h) = Dn(h)—In(h)—EXn(h), and
@n(h) = SQu(h) — 2I,(h).
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Note that ¢ and a; are in the same cycle. The same holds for j -
and a;. If the integers ¢,40;, 7, and a; are all in the same cycle, we
have the following lemma:

Lemma 3.3 If the integers 4, a;, §,a; are in the same cycle, and ei-
theri<a; < a; <jora; <i<j<a, then:

(i) Kn(a) - Kn(a) < 0, and equality holds if and only if by; =
min{a; — a;j,j — %) — 1.

(i) Qn(@) — Qnla) €0, and equality holds if and only a; = j =
it+l=a;+1.

Proof: Denote by a? := (1,2,...,n), the identity in S,, and
ok := a*"1oa for k € IN*. Let m denote the length of the cycle
containing ¢, a;, j, a;. Obviously, m > 2. Assume j = ¢¥() for some
integer v with 1 < v < m — 1. Then a; = a'(3) and a; = a¥*1(3).

Switching a; with o; breaks the cycle (4, al(3), a(i), . .., a™~1(3)) into
two cycles,

(60" TH2), @ *2(0), ..., a™ 1 (3))
and

(a”(3), a'(3), a%(3), ..., a""2()),

while it leaves the other cycles unchanged ~ see the statement and
solution of problem #5.2.2-2 (pp. 134 and 628) in Knuth [17]. There-
fore @ has one more cycle than a, and by Cayley’s theorem — see Cay-
ley [1] - we have EX,(2) = EX,,(a)—1. By Lemma 3.1, Corollary 3.2
and inequality (11),

Kn(a) — Kn(a) = 2(1 — min(a; — aj,j —1i) +by) <0,

and equality holds if and only if b;; = min(a; - a;,§ —4) — 1.

By a similar argument,

Qn(a) - Qn(a)

i

“2(3' - i)(ai — aj) + 2(21)5}’ + 1)
22min(a; — a;,7 — 1)
~(j —i){a: — a;) ~ 1], (12)

A
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and equality holds if and only if b;; = min(a; — a;75 — %) — 1. Since
g=j—i>1landy:=0a;—a; 21, we have (z — 1){y— 1) > 0,
which implies

zy+ 1> 34y > 2min(z,y), (13)
where both equalities hold simultaneously if and only if z = y = 1.
Using (12) and (13), we conclude that Qn(d) — @Qn(a) < 0 with
equality holding if and only if j —i = 1 = a; — e¢; and b;; = min(a; —
a.j)j'_?:)—'].=0. O

Now we are ready to give an alternative proof to Diaconis and
Graham’s first inequality. To illustrate the usefulness of our tech-
niques, we also prove the left inequality in (2).

Theorem 3.4 For eachn € IN* and h € 5, we have
(i) Kn(h) = Dn(h) - In(h) — EXa(R) > 0.
(i) Qn(h) = SQn(h) — 2I,(R) > 0.

Prooft: Let h € 8,. If h consists only of cycles of length 1,
then h = (1,2,...,n), and thus Dp(h) = EX,(h) = I.(h) = 0, and
the inequality holds as equality. Assume h has at least one cycle of
length greater than or equal to 2. Let ¢ be the smallest integer in
h involved in a cycle of length at least 2. Then there is an integer
j in h, not equal to %, such that h; = 4. The integers i = h;, hy,
and j are in the same cycle, and thus ¢ < j and h; > ¢ = h;. Let
h be the permutation in S, obtained by switching h; and hj = i.
Since either hy =1 < j < h; or ¢ = h; < h; < j, by the first part of
Lemma 3.3, K, (h) < Kn(h). Also, by Corollary 3.2, Dn(h) < Dy (h).
If A= (1,2,...,n), then Kp(h) = 0 < K,(h). Otherwise, h has at
least one cycle of length at least 2, and we can repeat the above
procedure to find a permutation h € S, such that K,(h} < Kn(h)
and Dyn(h) < Dp(h). Since D,(g) > 0 for all g € S,,, the procedure
has to terminate, and there is a finite sequence A9, A, ... Al™) of
elements of S, such that h(9 = p,

Kn(BOY > Ka(hY) > . > Ko (h™),

and ,
Dk > Do(B) > ... > Da(h™) = 0.
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Thus A" = (1,2,...,n) and 0 = K, (h(™) < K,,(h), and the first
part of the theorem has been proven.

The second inequality of the theorem can be proven using exactly
the same methodology and the second part of Lemma 3.3. O

4 Analysis of the equality case

In this section of the paper we investigate when does equality hold
in the Diaconis-Graham first inequality. In their paper, they have
stated that the characterization of permutations in S, for which
équality holds in the first inequality is an open problem. Below
we give necessary and sufficient conditions for a list a € S, to sat-
isfy Kn(a) = 0. These conditions essentially allow for the recursive
construction of the set of all such permutations for each n € IN*.
First for n > 2 and ¢ € §,, define a|; := (@n,a2,...,84—1) and
aln := (@1,...,an-2,8r—1). Whenn >3 andi € {2,...,n — 1}
define also

al; = (01, o1 @in1, Oy Qi ]y - - vy G )

Next let M7 := S}, and for each integer n > 2 let

Mn = {ae8,|3ie{l,....n—1}: a; =n, al; € M,_1,
and [A(al;) = Oor pi(als) = 0]}

Mn = {a€S,|apn=nanda|, e Ma_1};

M, = MuU M.

In other words, we can construct M, from M,,_ as follows: Take
an @ € M,_y and an integer ¢ such that 1 <7 < n ~1 and such that
either the number of integers in & to the left of &; that are greater
than &; is zero or the the number of integers in & to the right of &;
that are less than &; is zero. Replace 4; with n and put d; at the
end to form an a € My;. To construct Mpe from M, _;, take an
@ € Mp_1 and attach n at the end to form an a € Mpa. Finally
define M, as the union of M,,; and M,. :

287



Theorem 4.1 For eachn € IN* and a € S, K.(a) =0 if and only
ifae M,. :

Proof: We prove the theorem by induction on n. For n = 1
we have M; = 51 = {(1)} and K1((1)) = 0, so the theorem is true
in this case. Let n > 2 and assume the statement of the theorem is
true for all integers m with 1 <m < 7. Let a € S,,.

(i) Suppose first that @ € M,. If @ € My, then a, = n
and al, = (@a,...,apn—2,@n-1) € My_1 and Dp{a) = Dn_i(als),
In(a) = In—1(aln), and EX,(a) = EXn—1(als). Therefore Kn(a) =
Kn-1(ala) = 0, where the latter equality follows from the induction
hypothesis.

Assume now that @ € My;. Then thereis i € {1,...,n~ 1} such
that o; = n, aj; € M1 and either A;(al;) = 0 or p;(al;) = 0. Hence
minfA;(ali), 4 (als)] = 0. By the induction hypothesis, K,,_;(al;} = 0.
Since the i* element of a|; is an, by (8),

an — ¢ = pi(al;) — Ai(als). (14)

The latter equality implies Ai(al;) = u;i(al;) — (a, — 4), and hence
min{y;(al:) — (an — 1), wi(al;)) = 0. It follows that _
pi = pi(al;) = max(0, a, — 7). (15)
Note also p; is the number of integers among ait1,...,a,—1 that are
less than ey, and hence n—1—14— ; is the number of integers among
@i+1; .-+, 8n—1 that are greater than e,. (If i = n — 1, then i =0
andn—1—4—p; =0)

Define & = (al;,n}, i.e., a is created by attaching n at the end of
al;. Since i < n, note that & can be obtained from a by switching a;
and a,. Note also that either ¢ < a, < a; = n or a, <i<n=a;
and the numbers 4, a,, a; = n are in the same cycle of a. Also

bin(a) = #{k|i+1 Sk<n—lande;=n>a; > a,}
= n—1-1—uals). ' (16)
(Here #A denotes the number of elements in the finite set A.) Using
{(15) we obtain
bin(a) = n~1-—i—max(0,a, — i)
= min(n—i,n—an}—1=min(n —4,a; — a,) — 1.
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By Lemma 3.3 we have K.(a) = K, (&) = Kn_1(a];} = 0.

(ii) Conversely, assume Ki(a) = 0. If a, = n, then
aln = (a'la <e-30n-2, an-—l)

and Dp(a) = Dn_1{aln), In(a) = In—1(aln), and
EXn(e) = EXn_1(aln). Thus K,_i(aln) = Kn(a) = 0. By the
induction hypothesis a|, € M,_;. Hence a € Myo C M.

Assume now an, # n, in which case there is ¢ € {1,...,n — 1}
such that a; = n and al; = (ay,..., 81, Gn, @41, - - -, Gn—1). Define
@ = (ali,n), and note that a can be obtained from a by switching
an With a; = n. Sinceeitheri < a, < g;=nora, <t <n =g
and the numbers ¢, a, a; = n are in the same cycle, by Lemma 3.3,
Kn(a) < Ka(a) = 0 (by assumption). By the first Diaconis-Graham
inequality (Theorem 3.4), Kn(@) > 0, and thus K,(d) = 0. But
K.—1(a|;) = Kn(@) = 0, and by the induction hypothesis a|; € M,_1.
Since K,(&) — Kr{a) = 0, by Lemma 3.3, bin(a)} = min(n — 4,a; —
an) — 1. Using the last equation and equations (14) and (16), we
conclude that minfu;(al;), M(e];)] = 0. Therefore, a € M, C M,,
and the induction step is complete. O

5 How often does equality hold?

In this section we give some insight on how often the equality holds
in the first Diaconis-Graham inequality. First note that M; = 5,
My =8y, M3 = S3, and My = 54— {(3,4,1,2)}. Also,

Ms = Ss—{(1,4,52,3),(2,4,51,3),(3,41,2,5),(3,4,1,5,2),
(3,4,5,1,2),(3,4,5,2,1),(3,5,1,2,4), (3,5,1,4, 2),
(3,5,4,1,2),(4,1,5,2,3), (4,2,5,1,3), (4,3,5,1,2),
(4,5,1,2,3),(4,5,1,3,2), (4,5,2,1,3), (4,5,3,1,2),
(5,4,1,2,3)}.

For each n € IN*, let v, := #M,. Then 1 =1, 72 = 2, 73 = 6,
N = 23, 45 = 103, v = 511, 47 = 2719, ~g = 15205, 15 = 88197,
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10 = 526018, 11 = 3206206, v12 = 19885911, 13 = 125107063, and
Y14 = 796453594, _

Since we have been unable to find a closed-form formula for
“Yn, We seek an upper bound on its value for each n, and study
its asymptotic behaviour. Let f,(k,m) be the number of permu-
tations ¢ = (a,...,a,) € S, such that ax = n, an, = m and
either Ak(alr) = 0 or pr(elx) = 0. Our immediate goal is to de-
termine f,{k,m), from which we can determine an upper bound on
Vn = #M,. The reason is that

n—-1n-—1

My © U U{G.ESnlak=ﬂ, Qn = T,
k=1m=1
and P(ale) = Oor pe(ali) = O]},

and there is an obvious bijection between M,_1 and My», from which
we conclude that

n—1n—1

Fn = #Mnl -+ #MnQ S Ynr—1 + Z Z fﬂ(ka m) (17)

k=1 m=1

Using this inequality, we can prove the following theorem:

Theorem 5.1 For each N € IN* we have

N n—1 9 n—1
w s1+z((n-l)lzg—Z(k—l)!(n—k—l)l) s
k k=1

n=2 =1

Proof: We first count the number of a = (ai,...,an) € Sy with
ar =7, an = m and A(alg) = 0. Clearly a is such a permutation if

and only if
{a].,-"aak—l} - {1,...,7’1’1.'— 1}

and
{ak+1,..‘,an_1} _g {1,...,11,— 1}\{m,a1,...,ak_1}.

Such a permutation exists if and only if for the three positive integers
n, k,m we have k < m < n—1. The number of such permutations is
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(n—k—1{m~1)(m—2)---(m—k+1) (where an empty product
is by definition equal to one).

Similarly, the number of a = {ay,.. ,8n) € Sy with ap = n,
an = mand gg(aly) = 0is (k—1)(n—m— 1)(n ~m=2) - (k+1-m),
and such permutations exist if and only if the three positive integers
n,k,m we have m < k < n — 1. Finally, the number of a € S, with
ar =7, an = m, and Ar(al) = pi(als) = 0is (m~1)!(n—m~ ok,
where 0m = 1 if m = k, and zero otherwise. It follows that

flkym) = ok

k—m)!

and fn(m,m) = (m —1)I(n —m — 1)L.

Now we have from inequality (17} and the fact that 71 = 1 that
for N € IN*,

N N n—1n-—1
W = Nt (=) ST+ I35 fu(km)
n=2 n=2 k=1 m=1
N n-1 1)'
= 1+ZZ(n—k—1)'Z s
n=2 k=1 m=

+(k—1)'2(”—-T_)l_)'-_(k—l)!(n—knn.r).
1

Using standard combinatorial arguments, one can show that

1) n—1}!
(n ~ -1)12 k)‘_( k)

and

n 'm—lr (n—1)!
(k-1 Z((k m)! L n—-!c)'

m=1

Since also 3 =} =50 -1, we obtain inequality (18). O

We now have the following result.
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Theorem 5.2 We have yw/N! = O(nN/N). In particular,
Bmy_so0 vw/N! = 0.

Proof: Set

g(N) ———Z(n—l)'Z—. (19)

n=2

The result in Theorem 5.1 shows that vy /N! < g(N ) for N > 2, so
it suffices to show that g(N) = O(In N/N). Notice that

N—l ) M-t
g —gv -1y = LI -
+Zl((n——l)' (n—l}‘)n"12
"SR T W) AR
N-1
2 i1 N-1
- AV Mol
k=1
so that Vet
2 1 -1
IR SENE U] (20)
N
Since

> é- <1l+1Inn
k=1
for all n € IN*, it follows from (19) that for each N > 2,

N
i
g(N) < I—V-,Z(N- )I12(1+InN)<2+2InN.
" n=2

If follows from (20) that, for N > 2,

2N -1) _, (111N)

Q(N)S%(1+IH(N—1))+%+ . =

as desired. O
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We finish the paper by discussing when both of the Diaconis-
Graham inequalities hold as equalities simultaneously. For given n €
IN*, this occurs for those permutations e € S, for which In(a) =
EX,(a), which happens if and only if a € M, and o has no 3-
inversions. Diaconis and Graham [7} mention that the number of
such permutations is the Fibonacei number Fo,_; defined by Fp = 0,
=1 and Fh48 = Fpy1 + Fo for m > 0. Below we characterize
those permutations. Let II; := Si, and for each integer n > 2 let

Oy = {ae8i|3ic{l,...,n-2}:a;=n,a,=n—1,
aj; € a1}

Hae = {a€8n|an=mnandeal, € I, 1};

If,s = {a€8u|an-1=nandal,_1 €L, 1}

II, := II,1UIlL,o UIl,s.

It can be proved by induction on n that a € 11, if and only a € M,
and a has no 3-inversions. It can also be proved by induction that

#1lpo = Fon_3 = #llp3 and

#1ln: = #ln-1 — #H(n-—l)Z = #ll1 — #lh—o
= Fopog — Fops = Fon_g.

In such a case,
#1ln = Fon_y + Fon_3+ Fon_3 = Fo g+ Fop_3 = Fa,_4.

We omit the proofs of the above claims.
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