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In this note, we prove a lower bound formula for the sequence A301897 in the OEIS.
Let Sn be the symmetric group of order n. For permutation b = (b1, ..., bn) ∈ Sn, let In(b) be
the number of inversions in b; EXn(b) be the smallest number of transpositions needed to
transform b into the identity (1, ..., n); and Dn(b) =

∑
1≤i≤n |bi−i|. Cayley (1849) proved that

EXn(b) equals n minus the number of cycles in permutation b. In the references for sequence
A062869, the quantity Dn(b) is called the total distance of b or the total displacement
of b.

Diaconis and Graham (1977) proved that, for each integer n ≥ 1,

In(b) + EXn(b) ≤ Dn(b) ≤ 2In(b), (1)

while Hadjicostas and Monico (2015) proved that

Dn(b) ≤ In(b) + EXn(b) + bn/2c(bn/2c − 1).

For each integer n ≥ 1, let a(n) = A301897(n) equal the number of permutations b in Sn

that satisfy the equality
In(b) + EXn(b) = Dn(b).

Let Mn be the set of all permutations b in Sn that satisfy In(b) + EXn(b) = Dn(b). We
describe how to construct Mn recursively. Let M1 = S1. For n ≥ 2, construct the set Mn1

from the set Mn−1 as follows: Take a permutation c in Mn−1 and an integer i in {1, ..., n−1}
such that either the number of integers in c to the left of ci that are greater than ci is zero
or the number of integers in c to the right of ci that are less than ci is zero. Replace ci with
n and put ci at the end to form permutation b in Mn1. Construct the set Mn2 from the set
Mn−1 as follows: take a permutation c in Mn−1 and attach n at the end to form permutation
b in Mn2. Finally, define Mn as the union of the sets Mn1 and Mn2. See Hadjicostas and
Monico (2013) for more precise details.
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Hadjicostas and Monico (2013) proved that, for n ≥ 1,

a(n) ≤ Un := 1 +
n∑

k=2

(
(k − 1)!

k−1∑
`=1

2

`
−

k−1∑
`=1

(`− 1)!(k − `− 1)!

)
. (2)

This implies that a(n)/n! = O(log n/n). In this short note, we prove that

a(n) ≥ Ln := 1 +
n∑

`=2

(`− 1)F2`−3. (3)

Here, Fm is the m-th Fibonacci number defined by F0 = 0, F1 = 1, and Fm = Fm−1 + Fm−2
for m ≥ 2. The generating function of the numbers (Ln : n ≥ 1) is given by

G(x) =
∞∑
n=1

Lnx
n =

x(x4 − 4x3 + 9x2 − 5x + 1)

(1− x)(1− 3x + x2)2
.

Table 1 contains upper and lower bounds for a(n) = A301897(n), obtained through the
formulae (2) and (3), from n = 1 to n = 14. (Recall that n = 14 is the maximum value of n
for which we know the exact value of a(n).)

Table 1: Upper (Un) and lower (Ln) bounds for a(n) = A301897(n) for 1 ≤ n ≤ 14
n Ln a(n) Un

1 1 1 1
2 2 2 2
3 6 6 6
4 21 23 23
5 73 103 107
6 243 511 591
7 777 2719 3807
8 2408 15205 28131
9 7288 88197 235011
10 21661 526018 2192547
11 63471 3206206 22608867
12 183877 19885911 255442467
13 527761 125107063 3138886947
14 1503086 796453594 41684035107

Diaconis and Graham (1977) and Hadjicostas and Monico (2013) examined when

In(b) + EXn(b) = Dn(b) = 2In(b); (4)
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i.e., when both inequalities in (1) hold as equalities simultaneously. This happens if and only
if In(b) = EXn(b), which in turn happens if and only if permutation b belongs to Mn and
has no 3-inversion (i.e., it avoids the pattern 321). A 3-inversion in b is a triplet of integers
(i, j, k) in {1, ..., n} such that i < j < k but bi > bj > bk. The number of permutations in
Sn that satisfy both equalities is F2n−1 = A001519(n) = A000045(2n− 1). We will use this
observation to prove lower bound (3) above.

Proof of lower bound (3): From a discussion earlier in the note, we know that

a(n) = #Mn = #Mn1 + #Mn2 = #Mn1 + #Mn−1 = #Mn1 + a(n− 1) for n ≥ 2.

We shall prove that
#Mn1 ≥ (n− 1)F2n−3 for all n ≥ 2. (5)

Since a(1) = 1, inequality (5) would imply that, for n ≥ 1,

a(n) = 1 +
n∑

`=2

(a(`)− a(`− 1)) ≥ 1 +
n∑

`=2

#M`1 = 1 +
n∑

`=2

(`− 1)F2`−3 = Ln.

To prove inequality (5), define Πn to be the set of all permutations b ∈ Sn that satisfy
both equalities in (4). From a discussion above, we know that

#Πn = F2n−1 for n ≥ 1.

Clearly, Πn−1 ⊆ Mn−1 for n ≥ 2. Let c ∈ Πn−1. Assume that there is j ∈ {1, . . . , n− 1}
such that, in permutation c, the number of integers to the left of cj that are greater than
cj is not zero and the number of integers to the right of cj that are less than cj is not zero.
Then c has a 3-inversion, a contradiction.

Hence, for each i ∈ {1, . . . , n− 1}, either the number of integers in c to the left of ci that
are greater than ci is zero or the number of integers in c to the right of ci that are less than
ci is zero. By replacing ci with n and putting ci at the end of c, we form a permutation b in
the set Mn1 (whose construction is described at the beginning of this note).

We claim that this process produces distinct permutations b in Mn1. To prove that,
assume that the pairs (c, i) and (c̃, ĩ) of permutations c, c̃ ∈ Πn−1 and integers i, ĩ ∈
{1, . . . , n − 1} produce permutations b and b̃ in Mn1, respectively. Assume b = b̃. Then
bi = n = b̃ĩ, i = ĩ, and ci = bn = b̃n = c̃ĩ. In addition, for j 6= i = ĩ,

cj = bj = b̃j = c̃j.

Thus, c = c̃ and our claim above has been proved.
It follows that

#Mn1 ≥ (n− 1) (#Πn−1) = (n− 1)F2n−3.

This proves inequality (5), which implies lower bound (3).

Remark 1. The methodology used in the proof of lower bound (3) is similar to the proof
of upper bound (2) given in Section 5 of Hadjicostas and Monico (2013).
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