LOG-CONCAVE PERMUTATIONS

PONTUS ANDERSSON

ABSTRACT. For any n > 10 there are exactly 12 log-concave permuta-
tions of {1,...,n}.

1. INTRODUCTION

A sequence (z1,...,2,) of non-negative real numbers is log-concave if
. < 2
Ti—1Ti+1 S T;

for 2 <4 < n — 1. This paper is concerned with log-concave permutations
of the set {1,...,n}. In particular, we prove the following theorem.

Theorem 1. For any n > 10 there are exactly 12 log-concave permutations

of {1,...,n}.

These 12 permutations are

® T = (1>27 ,TL),
o ™ =(2,3,...,n,1),
o m3=(1,3,4,...,n,2),
® Ty = (172,4757' 'anv?’)a
® 75 = (1,3,5,...,6,4,2),
o 6 =(1,2,4,6,...,7,5,3),
and their reverses 7{,..., 5. We call these the basic (log-concave) permu-

tations. For n < 10 these permutations are still log-concave, but for n < 5
some of them coincide; e.g., for n = 5, m4 = mg and 7j = 7mz. The only
non-basic log-concave permutations are

e (1,3,6,5,4,2),

e (1,2,4,7,6,5,3),(1,3,5,6,7,4,2

e (1,2,4,6,7,8,5,3),(1,2,4,8,7,6
(1,3,5,8,7,6,4,2),(1,3,8,7,6,5,4,

* (17214767978 7 5 3) (17375777879767472)a(1737978777675741 2)7

and their reverses. (For n > 10, this follows from Theorem 1; for n < 10, it
follows from a refinement of its proof.) By finding all coincidences of basic
permutations this gives that the numbers of log-concave permutations for
n=20,1,2,... are

)

1,1,2,4,8,10,14, 18,22, 18,12,12,12, . ..
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2. PROOF OF THEOREM 1

It is easily checked that the basic permutations are log-concave (and dis-
tinct), so it remains to prove that there are no non-basic log-concave per-
mutations for n > 10. Assume that n > 10 and that 7 = (z1,...,2,) is a
non-basic log-concave permutation. Note that any log-concave sequence is
also unimodal, i.e., there exists an integer k such that 1 < k <n and

1 <X < ST 2 Tyl 2000 2 T

(For permutations, all inequalities are of course strict, and zx = n.) We
say that a sequence (yi,...,y;) appears (in ) if either y1 = zj,12 =
LTjtly--sYi = Tj4i—1 O Y1 = Tj5,Y2 = Tj—1,---,Yi = Tj—it1 for some j
Note that log-convexity implies that if (z,z + 1) appears in 7 and = > 1,
then (z,x 4+ 1,2 + 2,...,n) must appear in .

Let x be the smallest integer such that > 1 and (x,z + 1) appears in .
By unimodality, (n — 1,n) appears in 7, so such an z exists and z < n — 1.
Since x > 1, (z,xz + 1,...,n) must appear in 7.

If x =2, then (2,3,...,n) appears in 7, so 7w € {my, 7], m2, w5 }. If z = 3,
then (3,4,...,n) appears, and by the minimality of z, (3,4,...,n,2) must
appear. Since n > 4, (n,2,1) can not appear, so m = w3 or m = 5. If

x = 4, the same reasoning shows that (2,4,5,...,n,3) appears, and since
n > 9, (n,3,1) can not appear, so m = my or m = my. (For n <9, also the
permutation (2,4,5,...,n,3,1) is log-concave.)

Thus, we can assume that > 5. In this case,
(r—2,z,x+1,...,n,x — 1,2 — 3)

appears. By log-concavity,

(x —1)2 4
— = 1+ —.
z—3 S r—3
If 5 < x <8, the right hand side is less than 10, so x > 9. Hence,

n <

r>n—1-— >n— 2,

r—3
so we must in fact have x = n — 1. (For small n we also get the cases
x=n—2for 7<n <9 and x = n— 3 for n = 8.) This implies that
either (2,4,...,n—1,n,n—2,...,5,3) (if nis odd) or (3,5,...,n—1,n,n—
2,...,4,2) (if n is even) appears. Thus 7 € {ms, 7f, 76, G }. O



