LOG-CONCAVE PERMUTATIONS

PONTUS ANDERSSON

ABSTRACT. For any $n \geq 10$ there are exactly 12 log-concave permutations of $\{1, \ldots, n\}.$

1. INTRODUCTION

A sequence (x_1, \ldots, x_n) of non-negative real numbers is *log-concave* if

 $x_{i-1}x_{i+1} \leq x_i^2$

for $2 \leq i \leq n-1$. This paper is concerned with log-concave permutations of the set $\{1, \ldots, n\}$. In particular, we prove the following theorem.

Theorem 1. For any $n \geq 10$ there are exactly 12 log-concave permutations of $\{1, \ldots, n\}.$

These 12 permutations are

- $\pi_1 = (1, 2, \ldots, n),$
- $\pi_2 = (2, 3, \ldots, n, 1),$
- $\pi_3 = (1, 3, 4, \ldots, n, 2),$
- $\pi_4 = (1, 2, 4, 5, \ldots, n, 3),$
- $\pi_5 = (1, 3, 5, \ldots, 6, 4, 2),$
- $\pi_6 = (1, 2, 4, 6, \ldots, 7, 5, 3).$

and their reverses π_1^r, \ldots, π_6^r . We call these the *basic* (log-concave) permutations. For $n < 10$ these permutations are still log-concave, but for $n \leq 5$ some of them coincide; e.g., for $n = 5$, $\pi_4 = \pi_6$ and $\pi_4^r = \pi_6^r$. The only non-basic log-concave permutations are

- \bullet $(1, 3, 6, 5, 4, 2),$
- \bullet $(1, 2, 4, 7, 6, 5, 3), (1, 3, 5, 6, 7, 4, 2), (1, 3, 7, 6, 5, 4, 2),$
- \bullet $(1, 2, 4, 6, 7, 8, 5, 3), (1, 2, 4, 8, 7, 6, 5, 3), (1, 3, 5, 6, 7, 8, 4, 2),$
- $(1, 3, 5, 8, 7, 6, 4, 2), (1, 3, 8, 7, 6, 5, 4, 2),$
- \bullet $(1, 2, 4, 6, 9, 8, 7, 5, 3), (1, 3, 5, 7, 8, 9, 6, 4, 2), (1, 3, 9, 8, 7, 6, 5, 4, 2),$

and their reverses. (For $n \geq 10$, this follows from Theorem 1; for $n < 10$, it follows from a refinement of its proof.) By finding all coincidences of basic permutations this gives that the numbers of log-concave permutations for $n = 0, 1, 2, \ldots$ are

 $1, 1, 2, 4, 8, 10, 14, 18, 22, 18, 12, 12, 12, \ldots$

Date: May 7, 2002.

2 PONTUS ANDERSSON

2. Proof of Theorem 1

It is easily checked that the basic permutations are log-concave (and distinct), so it remains to prove that there are no non-basic log-concave permutations for $n \geq 10$. Assume that $n \geq 10$ and that $\pi = (x_1, \ldots, x_n)$ is a non-basic log-concave permutation. Note that any log-concave sequence is also unimodal, i.e., there exists an integer k such that $1 \leq k \leq n$ and

$$
x_1 \le x_2 \le \dots \le x_k \ge x_{k+1} \ge \dots \ge x_n.
$$

(For permutations, all inequalities are of course strict, and $x_k = n$.) We say that a sequence (y_1, \ldots, y_i) appears (in π) if either $y_1 = x_j, y_2 =$ $x_{j+1}, \ldots, y_i = x_{j+i-1}$ or $y_1 = x_j, y_2 = x_{j-1}, \ldots, y_i = x_{j-i+1}$ for some j. Note that log-convexity implies that if $(x, x + 1)$ appears in π and $x > 1$, then $(x, x+1, x+2, \ldots, n)$ must appear in π .

Let x be the smallest integer such that $x > 1$ and $(x, x + 1)$ appears in π . By unimodality, $(n-1, n)$ appears in π , so such an x exists and $x \leq n-1$. Since $x > 1$, $(x, x + 1, \ldots, n)$ must appear in π .

If $x = 2$, then $(2, 3, \ldots, n)$ appears in π , so $\pi \in {\pi_1, \pi_1^r, \pi_2, \pi_2^r}$. If $x = 3$, then $(3, 4, \ldots, n)$ appears, and by the minimality of x, $(3, 4, \ldots, n, 2)$ must appear. Since $n > 4$, $(n, 2, 1)$ can not appear, so $\pi = \pi_3$ or $\pi = \pi_3^r$. If $x = 4$, the same reasoning shows that $(2, 4, 5, \ldots, n, 3)$ appears, and since $n > 9$, $(n, 3, 1)$ can not appear, so $\pi = \pi_4$ or $\pi = \pi_4^r$. (For $n \leq 9$, also the permutation $(2, 4, 5, \ldots, n, 3, 1)$ is log-concave.)

Thus, we can assume that $x \geq 5$. In this case,

$$
(x-2, x, x+1, \ldots, n, x-1, x-3)
$$

appears. By log-concavity,

$$
n \le \frac{(x-1)^2}{x-3} = x+1+\frac{4}{x-3}.
$$

If $5 \leq x \leq 8$, the right hand side is less than 10, so $x \geq 9$. Hence,

$$
x \ge n - 1 - \frac{4}{x - 3} > n - 2,
$$

so we must in fact have $x = n - 1$. (For small n we also get the cases $x = n - 2$ for $7 \le n \le 9$, and $x = n - 3$ for $n = 8$.) This implies that either $(2, 4, \ldots, n-1, n, n-2, \ldots, 5, 3)$ (if n is odd) or $(3, 5, \ldots, n-1, n, n-$ 2, ..., 4, 2) (if *n* is even) appears. Thus $\pi \in {\pi_5, \pi_5, \pi_6, \pi_6^r}$. \Box