LOG-CONCAVE PERMUTATIONS

PONTUS ANDERSSON

ABSTRACT. For any $n \ge 10$ there are exactly 12 log-concave permutations of $\{1, \ldots, n\}$.

1. INTRODUCTION

A sequence (x_1, \ldots, x_n) of non-negative real numbers is *log-concave* if

 $x_{i-1}x_{i+1} \le x_i^2$

for $2 \le i \le n-1$. This paper is concerned with log-concave permutations of the set $\{1, \ldots, n\}$. In particular, we prove the following theorem.

Theorem 1. For any $n \ge 10$ there are exactly 12 log-concave permutations of $\{1, \ldots, n\}$.

These 12 permutations are

- $\pi_1 = (1, 2, \ldots, n),$
- $\pi_2 = (2, 3, \dots, n, 1),$
- $\pi_3 = (1, 3, 4, \dots, n, 2),$
- $\pi_4 = (1, 2, 4, 5, \dots, n, 3),$
- $\pi_5 = (1, 3, 5, \dots, 6, 4, 2),$
- $\pi_6 = (1, 2, 4, 6, \dots, 7, 5, 3),$

and their reverses π_1^r, \ldots, π_6^r . We call these the *basic* (log-concave) permutations. For n < 10 these permutations are still log-concave, but for $n \leq 5$ some of them coincide; e.g., for n = 5, $\pi_4 = \pi_6$ and $\pi_4^r = \pi_6^r$. The only non-basic log-concave permutations are

- (1, 3, 6, 5, 4, 2),
- (1, 2, 4, 7, 6, 5, 3), (1, 3, 5, 6, 7, 4, 2), (1, 3, 7, 6, 5, 4, 2),
- (1, 2, 4, 6, 7, 8, 5, 3), (1, 2, 4, 8, 7, 6, 5, 3), (1, 3, 5, 6, 7, 8, 4, 2),
- (1, 3, 5, 8, 7, 6, 4, 2), (1, 3, 8, 7, 6, 5, 4, 2),
- (1, 2, 4, 6, 9, 8, 7, 5, 3), (1, 3, 5, 7, 8, 9, 6, 4, 2), (1, 3, 9, 8, 7, 6, 5, 4, 2),

and their reverses. (For $n \ge 10$, this follows from Theorem 1; for n < 10, it follows from a refinement of its proof.) By finding all coincidences of basic permutations this gives that the numbers of log-concave permutations for $n = 0, 1, 2, \ldots$ are

 $1, 1, 2, 4, 8, 10, 14, 18, 22, 18, 12, 12, 12, \ldots$

Date: May 7, 2002.

PONTUS ANDERSSON

2. Proof of Theorem 1

It is easily checked that the basic permutations are log-concave (and distinct), so it remains to prove that there are no non-basic log-concave permutations for $n \ge 10$. Assume that $n \ge 10$ and that $\pi = (x_1, \ldots, x_n)$ is a non-basic log-concave permutation. Note that any log-concave sequence is also unimodal, i.e., there exists an integer k such that $1 \le k \le n$ and

$$x_1 \le x_2 \le \dots \le x_k \ge x_{k+1} \ge \dots \ge x_n$$

(For permutations, all inequalities are of course strict, and $x_k = n$.) We say that a sequence (y_1, \ldots, y_i) appears $(in \pi)$ if either $y_1 = x_j, y_2 = x_{j+1}, \ldots, y_i = x_{j+i-1}$ or $y_1 = x_j, y_2 = x_{j-1}, \ldots, y_i = x_{j-i+1}$ for some j. Note that log-convexity implies that if (x, x + 1) appears in π and x > 1, then $(x, x + 1, x + 2, \ldots, n)$ must appear in π .

Let x be the smallest integer such that x > 1 and (x, x + 1) appears in π . By unimodality, (n - 1, n) appears in π , so such an x exists and $x \le n - 1$. Since x > 1, (x, x + 1, ..., n) must appear in π .

If x = 2, then (2, 3, ..., n) appears in π , so $\pi \in \{\pi_1, \pi_1^r, \pi_2, \pi_2^r\}$. If x = 3, then (3, 4, ..., n) appears, and by the minimality of x, (3, 4, ..., n, 2) must appear. Since n > 4, (n, 2, 1) can not appear, so $\pi = \pi_3$ or $\pi = \pi_3^r$. If x = 4, the same reasoning shows that (2, 4, 5, ..., n, 3) appears, and since n > 9, (n, 3, 1) can not appear, so $\pi = \pi_4$ or $\pi = \pi_4^r$. (For $n \le 9$, also the permutation (2, 4, 5, ..., n, 3, 1) is log-concave.)

Thus, we can assume that $x \ge 5$. In this case,

$$(x-2, x, x+1, \dots, n, x-1, x-3)$$

appears. By log-concavity,

$$n \le \frac{(x-1)^2}{x-3} = x+1+\frac{4}{x-3}.$$

If $5 \le x \le 8$, the right hand side is less than 10, so $x \ge 9$. Hence,

$$x \ge n - 1 - \frac{4}{x - 3} > n - 2,$$

so we must in fact have x = n - 1. (For small *n* we also get the cases x = n - 2 for $7 \le n \le 9$, and x = n - 3 for n = 8.) This implies that either $(2, 4, \ldots, n - 1, n, n - 2, \ldots, 5, 3)$ (if *n* is odd) or $(3, 5, \ldots, n - 1, n, n - 2, \ldots, 4, 2)$ (if *n* is even) appears. Thus $\pi \in \{\pi_5, \pi_5^r, \pi_6, \pi_6^r\}$.