
LOG-CONCAVE PERMUTATIONS

PONTUS ANDERSSON

Abstract. For any n ≥ 10 there are exactly 12 log-concave permuta-
tions of {1, . . . , n}.

1. Introduction

A sequence (x1, . . . , xn) of non-negative real numbers is log-concave if

xi−1xi+1 ≤ x2
i

for 2 ≤ i ≤ n − 1. This paper is concerned with log-concave permutations
of the set {1, . . . , n}. In particular, we prove the following theorem.

Theorem 1. For any n ≥ 10 there are exactly 12 log-concave permutations
of {1, . . . , n}.

These 12 permutations are

• π1 = (1, 2, . . . , n),
• π2 = (2, 3, . . . , n, 1),
• π3 = (1, 3, 4, . . . , n, 2),
• π4 = (1, 2, 4, 5, . . . , n, 3),
• π5 = (1, 3, 5, . . . , 6, 4, 2),
• π6 = (1, 2, 4, 6, . . . , 7, 5, 3),

and their reverses πr
1, . . . , π

r
6. We call these the basic (log-concave) permu-

tations. For n < 10 these permutations are still log-concave, but for n ≤ 5
some of them coincide; e.g., for n = 5, π4 = π6 and πr

4 = πr
6. The only

non-basic log-concave permutations are

• (1, 3, 6, 5, 4, 2),
• (1, 2, 4, 7, 6, 5, 3), (1, 3, 5, 6, 7, 4, 2), (1, 3, 7, 6, 5, 4, 2),
• (1, 2, 4, 6, 7, 8, 5, 3), (1, 2, 4, 8, 7, 6, 5, 3), (1, 3, 5, 6, 7, 8, 4, 2),

(1, 3, 5, 8, 7, 6, 4, 2), (1, 3, 8, 7, 6, 5, 4, 2),
• (1, 2, 4, 6, 9, 8, 7, 5, 3), (1, 3, 5, 7, 8, 9, 6, 4, 2), (1, 3, 9, 8, 7, 6, 5, 4, 2),

and their reverses. (For n ≥ 10, this follows from Theorem 1; for n < 10, it
follows from a refinement of its proof.) By finding all coincidences of basic
permutations this gives that the numbers of log-concave permutations for
n = 0, 1, 2, . . . are

1, 1, 2, 4, 8, 10, 14, 18, 22, 18, 12, 12, 12, . . .
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2. Proof of Theorem 1

It is easily checked that the basic permutations are log-concave (and dis-
tinct), so it remains to prove that there are no non-basic log-concave per-
mutations for n ≥ 10. Assume that n ≥ 10 and that π = (x1, . . . , xn) is a
non-basic log-concave permutation. Note that any log-concave sequence is
also unimodal, i.e., there exists an integer k such that 1 ≤ k ≤ n and

x1 ≤ x2 ≤ · · · ≤ xk ≥ xk+1 ≥ · · · ≥ xn.

(For permutations, all inequalities are of course strict, and xk = n.) We
say that a sequence (y1, . . . , yi) appears (in π) if either y1 = xj , y2 =
xj+1, . . . , yi = xj+i−1 or y1 = xj , y2 = xj−1, . . . , yi = xj−i+1 for some j.
Note that log-convexity implies that if (x, x + 1) appears in π and x > 1,
then (x, x + 1, x + 2, . . . , n) must appear in π.

Let x be the smallest integer such that x > 1 and (x, x + 1) appears in π.
By unimodality, (n− 1, n) appears in π, so such an x exists and x ≤ n− 1.
Since x > 1, (x, x + 1, . . . , n) must appear in π.

If x = 2, then (2, 3, . . . , n) appears in π, so π ∈ {π1, π
r
1, π2, π

r
2}. If x = 3,

then (3, 4, . . . , n) appears, and by the minimality of x, (3, 4, . . . , n, 2) must
appear. Since n > 4, (n, 2, 1) can not appear, so π = π3 or π = πr

3. If
x = 4, the same reasoning shows that (2, 4, 5, . . . , n, 3) appears, and since
n > 9, (n, 3, 1) can not appear, so π = π4 or π = πr

4. (For n ≤ 9, also the
permutation (2, 4, 5, . . . , n, 3, 1) is log-concave.)

Thus, we can assume that x ≥ 5. In this case,

(x− 2, x, x + 1, . . . , n, x− 1, x− 3)

appears. By log-concavity,

n ≤ (x− 1)2

x− 3
= x + 1 +

4
x− 3

.

If 5 ≤ x ≤ 8, the right hand side is less than 10, so x ≥ 9. Hence,

x ≥ n− 1− 4
x− 3

> n− 2,

so we must in fact have x = n − 1. (For small n we also get the cases
x = n − 2 for 7 ≤ n ≤ 9, and x = n − 3 for n = 8.) This implies that
either (2, 4, . . . , n−1, n, n−2, . . . , 5, 3) (if n is odd) or (3, 5, . . . , n−1, n, n−
2, . . . , 4, 2) (if n is even) appears. Thus π ∈ {π5, π

r
5, π6, π

r
6}.


