[go: up one dir, main page]

login
A301288
Partial sums of A301287.
1
1, 4, 10, 17, 25, 40, 58, 75, 95, 120, 148, 177, 207, 242, 282, 321, 361, 408, 458, 507, 559, 616, 676, 737, 799, 866, 938, 1009, 1081, 1160, 1242, 1323, 1407, 1496, 1588, 1681, 1775, 1874, 1978, 2081, 2185, 2296, 2410, 2523, 2639, 2760, 2884, 3009, 3135, 3266, 3402, 3537, 3673
OFFSET
0,2
COMMENTS
Linear recurrence and g.f. confirmed by Shutov/Maleev link in A301287. - Ray Chandler, Aug 31 2023
FORMULA
From Chai Wah Wu, Feb 03 2021: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 3*a(n-3) - 3*a(n-4) + 2*a(n-5) - 2*a(n-6) + a(n-7) for n > 8.
G.f.: (2*x^8 - 2*x^7 - x^6 - 4*x^5 - 2*x^4 - 2*x^3 - 4*x^2 - 2*x - 1)/((x - 1)^3*(x^2 + 1)*(x^2 + x + 1)). (End)
CROSSREFS
Cf. A301287.
Sequence in context: A310542 A366102 A183905 * A347154 A009860 A294249
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 23 2018
STATUS
approved