[go: up one dir, main page]

login
A300621
Numerators of sequence whose exponential self-convolution yields sequence 1, 2, 3, 5, 7, 11, 13, ... (1 with primes).
1
1, 1, 1, 1, -5, 27, -277, 895, -27655, 248185, -5052519, 28731489, -1444496477, 19885473347, -595129566605, 4808968469791, -333894246376015, 6195249562217393, -244725707175834895, 2563206341379247681, -227039228335442728053, 5299214394077195384747, -260053313429315175721413
OFFSET
0,5
LINKS
FORMULA
Numerators of coefficients in expansion of e.g.f. sqrt(1 + Sum_{k>=1} prime(k)*x^k/k!).
EXAMPLE
1, 1, 1/2, 1, -5/4, 27/4, -277/8, 895/4, -27655/16, 248185/16, -5052519/32, 28731489/16, -1444496477/64, 19885473347/64, ...
MATHEMATICA
Numerator[nmax = 22; CoefficientList[Series[(1 + Sum[Prime[k] x^k/k!, {k, 1, nmax}])^(1/2), {x, 0, nmax}], x] Range[0, nmax] !]
CROSSREFS
Cf. A008578, A073749, A073750, A300622 (denominators).
Sequence in context: A360770 A360726 A360712 * A265907 A360732 A135627
KEYWORD
sign,frac
AUTHOR
Ilya Gutkovskiy, Aug 14 2018
STATUS
approved