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On a Conformal Mapping of Regular Hexagons and the Spiral of its
Centers
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Abstract

A sequence of regular hexagons used in a geometrical proof of the incommensurability of the shorter
diagonal and the side of a hexagon is obtained by iteration of a conformal mapping. The centers form
a discrete spiral and are interpolated by two continuous spirals, one with discontinuous curvature the
other one a logarithmic spiral.

1 Introduction

A geometrical proof by contradiction of the incommensurability of the shorter diagonal of a regular
hexagon and its side can be given by considering an infinite process of ever smaller hexagons. This is
explained in Havil’s book [2] on irrationals. It shows the irrationality of

√
3, the length ratio between the

a shorter diagonal and the side of a regular hexagon. We use this geometrical construction of a sequence of
translated, rotated and down-scaled hexagons (always regular ones) {Hk}∞k=0 inscribed in circles {Ck}∞k=0

of radius σk r0, with σ = −1 +
√
3 and centers {Ok}∞k=0. These centers build a discrete spiral. The

interpolation of the centers by a continuous curve is immediately given by patching together circular arcs
of radius σk with one of the Hk vertices as centers. The curvature of this spiral is therefore discontinuous.
Due to a conformal mapping of the loxodromic type whose iteration produces the sequence of hexagons
an interpolating logarithmic spiral ensues with the finite fixed point S as its center. These two spirals are
analogous to the ones in a regular pentagon with a sequence of golden triangles (or rectangles) shown,
e.g., in the book of Livio [4], as figures 40 and 41 on p. 119. For these triangles the conformal mapping
has been given in [3]. The completion of the hexagon sequence and the spirals using negative k values is
also considered.

2 Hexagon Descent

For the following geometrical construction see Figure 1 with k = 0. One starts with a circle C0 with
center O0 and radius r0 (this will be taken in the sequel as length unit. Hence, lengths will always
be lengths ratios w.r.t. r0), and inscribes a regular hexagon (the standard construction with a pair
of compasses). The vertices of the hexagon (only regular hexagons will be considered) are denoted by
Vk(j), for j = 0, 1, ..., 5 , taken in the positive (anti-clockwise) sense. The choice of V0(0) defines the
non-negative x0 axis as prolongation of O0, V0(0). These Cartesian coordinates are named (x0, y0) (or
in the complex plane z = x0 + y0 i).

The next (smaller) hexagon H1 is inscribed in a circle C1 with center O1 and radius r1 = σ := −1 +
√
3.

This center is obtained by drawing the smaller diagonal in H0, viz , D0 = V0(0), V0(2), which has length√
3, intersecting it with a circle of radius 1 around V0(2). Then on the circle C1(O1, r1), with radius
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r1 = O1, V0(0) = σ = −1 +
√
3, the vertex V1(3) of H1 is the intersection point with the x0 axis, i.e.,

the prolongation of O0 V0(0) or V0(3)V0(0). From this vertex V1(3) one finds the vertex V1(0) as antipode
on C1. V1(5) coincides with V0(0).

In the second step the new center O2 of H2 is constructed in the same way by drawing the smaller
diagonal D1 = V1(0)V1(2) (V1(2) happens to lie on the diagonal D0, and D1 is parallel to the x0 axis).
Then the circle around V1(2) with radius r1 intersects D1 at O2. The vertex V2(3) on C2(O2, r2), with
r2 = O2, V1(0) = σ r1 = σ2), is the point of intersection of C2 with the x1 axis (prolongation of
O1, V1(0)). The antipode of V2(3) on C2 is V2(0), etc.

This construction implies the following data (besides some obvious ones for a hexagon).

Lemma 1

1) |V0(2), V0(0)| =
√
3, |O1, V0(0)| = σ := −1 +

√
3. |V1(3), O0| =

σ2

2
= 2 −

√
3.

2) The two circles C0 and C1 intersect at (1, 0) and S = (0, 1).

Proof: (In Cartesian coordinates (x0, y0))

1) V0(2) =

(

−1

2
,

√
3

2

)

, hence ∠(V0(2), V0(1), O0) = π
6 . Therefore, O1 =

(

σ
2 ,

σ
2

)

, and

∠(V0(0), O0, O1) =
π

4
. ∠(V0(0), V1(3), O1) =

π

6
. From △(V1(3), O1, V0(0)) one has |V1(3), V0(0)| =

2 ·
(σ

2

√
3
)

. On the other hand, the y0 component of V1(0) is sin
(π

6

)

2σ = σ, hence V0(0) = V1(5),

and V1(0), V0(0) is parallel to the y0−axis. Therefore V1(0), V1(2) is parallel to the x0-axis, and V1(2)

with y0-component σ lies on the diagonal D0. |V1(3), O0| = σ

√
3

2
− σ

2
=

σ2

2
= 2 −

√
3.

2) With C0 : x
2
0 + y20 = 1 and C1 :

(

x0 − σ

2

)2
+
(

y0 − σ

2

)2
= σ2 one finds the intersections (1, 0) and

S = (0, 1).

Thus the new hexagon H1 is obtained from the old one, H0, by a translation with ~v0 :=
−−−−→
O0, O1 =

σ (1, 1)⊤ (a column vector), followed by a rotation about the axis perpendicular to the plane (the z−axis)

through O1 by the angle ∠(V1(0), V1(2), V1(5)) =
π

6
and scaling down by a factor σ. This process is

iterated to find Hk+1 from Hk, for k = 0, 1, ... (see Figure 1).

Next, the vectors ~vk =
−−−−−−→
Ok−1, Ok are given in polar coordinates.

Lemma 2: Vectors ~vk, k = 1, 2, ...

~vk
.
= vk

(

cos αk

sin αk

)

, with vk = σk

√
2

2
, and αk = (2k + 1)

π

12
, for k ∈ N, (1)

vk = (ak + bk
√
3 )

√
2

2
, where ak = (−1)k A026150(k), and bk = (−1)k+1 A002605(k) .

For the first ak and bk entries see Table 6, column rk. For the components of the first twelve vectors ~vk
see Table 1.

Proof:

i) The polar angle α is obtained recursively from αk = αk−1 + π
6 , for k = 2, 3, ..., with input α1 = π

4
which follows from the rotation by an angle of π

6 to obtain Hk from Hk−1.

ii) The length vk is obtained recursively from vk = vk−1 σ for k = 2, 3, ... with input v1 = σ
√
2. One

may take formally v0 =
√
2
2 and then vk = σk v0, for k = (0), 1, 2, .... For {ak}∞k=0 and {bk}∞k=0 one

obtains the mixed recurrence ak = −ak−1 + 3 bk−1 and bk = ak−1 − bk−1, for k = 0, 1, ... , and inputs
a0 = 1 and b0 = 0. This decouples, inserting bk + bk−1 = ak−1 into ak + ak−1, to the three term recur-
rences bk = 2 (−bk−1 + bk−2) with inputs b0 = 0 and b1 = 1, and ak = 2 (−ak−1 + ak−2) with inputs
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a0 = 1 and a1 = −1. The Binet formulae are, with τ :=
2

σ
= 1 +

√
3 =: −σ, ak =

1

2

(

σk + (−τ)k
)

and bk =
1

2
√
3

(

σk − (−τ)k
)

. The o.g.f.s (ordinary generating functions) are Ga(x) =
1 + x

1 + 2x − 2x2

and Gb(x) =
x

1 + 2x − 2x2
. This explains the given result involving A026150 and A002605.

In Cartesian coordinates one can write the recurrence as

~vk = σ R~vk−1, k = 2, 3, ... with ~v1
.
=

σ

2

(

1
1

)

and R
.
=

1

2

( √
3 −1

1
√
3

)

. (2)

R is the rotation matrix for angle
π

6
. This leads to

~vk+1 = (σR)k ~v1, for k = (0), 1, 2, ... (3)

The powers of σ have been given above as σk = ak + bk
√
3.

The powers of R are found as an application of the Cayley −Hamilton theorem, e.g., [8],[7]:

Rk = Sk−1(
√
3 )R − Sk−2(

√
3 )12, for k = 1, 2, ... , (4)

Where Sn(x) is the Chebyshev polynomial with coefficients given in A049310 with S−1(x) =
0 and S−2(x) = −1. Here S2 l(

√
3 ) = A057079(l) and S2 l+1(

√
3 ) = A019892(l)

√
3, for

k = 0, 1, ... . A057079 and A019892 are period length 6 sequences, repeat(1, 2, 1, −1, −2, −1)
and repeat(1, 1, 0, −1, −1, 0), respectively. I.e., Sn(

√
3 ) = sn + tn

√
3, with {sn}∞n=0 =

repeat(1, 0, 2, 0, 1, 0, −1, 0, −2, 0, −1, 0) and {tn}∞n=0 = repeat(0, 1, 0, 1, 0, 0, 0, −1, 0, −1, 0, 0).

Corollary 1: ~vk Periodicity modulo 12 up to scaling

~vk+12 l = σ12 l ~vk, for k ∈ N, l ∈ N0 . (5)

This follows from the periodicity of the angle αk in eq. (1).

The calculation of the ~v2 l and ~v2 l+1 components w.r.t. the (x0, y0) coordinate system leads to

Proposition 1: Components of ~vk, k = 1, 2, ...

~v2 l
.
=

1

4

(

ve1(l) + we1(l)
√
3

ve2(l) + we2(l)
√
3

)

, l ≥ 1 , ~v2 l+1
.
=

1

4

(

vo1(l) + wo1(l)
√
3

vo2(l) + wo2(l)
√
3

)

, l ≥ 0 , (6)

with ve1(l) = −a2 l A(l − 1) + 3 b2 l (A(l − 1) − 2B(l − 2)) , (7)

we1(l) = +a2 l (A(l − 1) − 2B(l − 2)) − b2 l A(l − 1) , (8)

ve2(l) = +a2 l A(l − 1) + 3 b2 l (A(l − 1) − 2B(l − 2)) , (9)

we2(l) = +a2 l (A(l − 1) − 2B(l − 2)) + b2 l A(l − 1) , (10)

and vo1(l) = a2 l+1 (3B(l − 1) − 2A(l − 1)) − 3 b2 l+1B(l − 1) , (11)

wo1(l) = −a2 l+1B(l − 1) + b2 l+1 (3B(l − 1) − 2A(l − 1)) , (12)

vo2(l) = +a2 l+1 (3B(l − 1) − 2A(l − 1)) + 3 b2 l+1 B(l− 1) , (13)

wo2(l) = +a2 l+1B(l − 1) + b2 l+1 (3B(l − 1) − 2A(l − 1)) , (14)

where A(l) = S2 l(
√
3 ), B(l) = S2 (l−1)(

√
3 )/

√
3 ,

and ak and bk are given in Lemma 2 .

See Table 1 for the coordinates of ~vk for k = 1, 2, ..., 12 .
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The center Ok of hexagon Hk, the endpoint of the vector ~Ok :=
−−−−→
O0, Ok, is obtained from (undefined

sums are set to 0)

~Ok =

k
∑

j=1

~vj , k = 1, 2, ... and ~O0 = ~0, (15)

~Ok =



12 +
k−1
∑

j=1

(σR)j



 ~v1 . (16)

In the coordinate system (x0, y0) the components of center Ok follow from Proposition 1.

Corollary 2: Components of Ok, k = 1, 2, ...

(Ok)x0
=

1

4







⌊ k

2⌋
∑

j=1

(ve1(j) + we1(j)
√
3 ) +

⌊ k−1

2 ⌋
∑

j=0

(vo1(j) + wo1(j)
√
3 )






,

(Ok)y0 =
1

4







⌊ k

2
⌋

∑

j=1

(ve2(j) + we2(j)
√
3 ) +

⌊ k−1

2
⌋

∑

j=0

(vo2(j) + wo2(j)
√
3 )






. (17)

See Table 1 for the components of Ok for k = 1, 2, ..., 12 . It seems that the centers O6 l, for l = 0, 1, ...
lie on the y0 axis. This will be proved in the next section in Proposition 4.
The relation between ~Ok+12 l and Qk will also be considered in the next section in Proposition 6, part 7),
in the complex plane. It is a periodicity modulo 12 up to a scaling and a translation.

The vertices Vk(j), for j = 0, 1, ..., 5 , of the hexagon Hk follow from ~Vk(j) :=
−−−−−−→
O0, Vk(j).

Proposition 2: Vertices of hexagons Hk

~Vk(j) = ~Ok + σk Rk+2 j

(

1
0

)

, for k = 0, 1, ... , and j = 0, 1, ..., 5 . (18)

Proof:

For the hexagon Hk the vector
−−−−−−→
Ok, Vk(0) is obtained from the unit vector in x0 direction of the original

coordinate system (x0, y0) for the first hexagon H0 by k-fold rotation with R = R(π6 ) and down-scaling
by σ as

−−−−−−→
Ok, Vk(0) = (σR)k

(

1
0

)

. (19)

Then the vectors for the other vertices are obtained by repeated rotation of 60◦, i.e., by application of R2

leading to the assertion.

For the (x0, y0) components of ~Vk(0), for 0, 1, ..., 12 , see Table 2, and for the other vertices, for j =
1, 2, ..., 5 , see Tables 3, 4 and 5.

Lemma 3: Triangles Tk

The triangle Tk = △(Ok, Vk(2), Ok+1), for k = 0, 1, ... , is isosceles with basis vk+1 =
1√
2
σk+1 and

two sides of length rk = σk. The angles are ∠(Ok+1, Vk(2), Ok) = π
6 =̂ 30◦ and twice

5π

12
=̂ 75◦.

Proof: This is clear from the construction and the values for vk given above in Lemma 2 and rk. See Fig-
ure 1.
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The polar coordinates of Ok, the center of hexagon Hk are given as follows. Note that ϕ ∈ [0, 2π). The
number of revolutions, using also ϕ ≥ 2π (sheets in the complex plane), will be considered in the next
section.

Corollary 3: Polar coordinates of Ok

In the complex plane Ok =̂ zk = ρk exp(i ϕk) with ρk =
∣

∣

∣

−−−−→
O0, Ok

∣

∣

∣
, one has

ρk =
√

((Ok)x0
)2 + ((Ok)y0)

2, with eq.(17) (20)

ϕk = ϕ̂k in quadrant I, = ϕ̂k + π in quadrants II and III, = ϕ̂k + 2π in quadrant IV, with

ϕ̂k = arctan

(

(Ok)y0
(Ok)x0

)

. (21)

ρ2k is integer in the real quadratic number field Q(
√
3 ). For the values for k = 0, 1, ..., 12 , see Table

2. The corresponding angles are (ϕk 180/π)
◦. The values for tan ϕ̂k are elements of Q(

√
3 ). For their

components see also Table 2, for k = 1, 2, ..., 12 (for k = 0, with z0 = 0, the value of ϕ̂0 is arbitrary;
in Table 2 we have set it to 0).

3 Conformal mapping and the Hexagon Spiral

The discrete spiral formed by the hexagon centers O0 and Ok given in eq. (17) for k = 0, 1, ... , are shown
as dots in Figure 2 for k = 0, 1, ..., 11 . In the complex plane C = C ∪∞ these centers will be called
zk = (Ok)x0

+ (Ok)y0 i. The construction of these hexagon described in sect. 1 is obtained by repeated
application of a conformal Möbius transformation. It is determined by mapping the triangle T0 of H0

with vertices z(1) = V0(2) =
1

2
(−1 +

√
3 i), z(2) = z0 = 0 + 0 i and z(3) = z1 =

1

2
(1 + 1 i) to the

translated, rotated and scaled triangle T1 of H1 with vertices w(1) = V1(2) = (−2 +
√
3) + (−1 +

√
3 ) i,

w(2) = z1 =
1

2

(

−1 +
√
3 + (−1 +

√
3) i
)

and w(3) = z2 = (−3 + 2
√
3 ) + (−1 +

√
3) i. See Figure

1 for these two triangles, setting k = 0. In general triangle Tk is mapped to Tk+1 by this conformal
transformation, especially w(zk) = zk+1, for k = 0, 1, ... . The unique Möbius transformation which
maps the vertices of T0 to those of T1 is given by solving the double quotient equation for w = w(z)
(see. e.g., [6], [9])

DQ(w(1), w(2), w(3), w) = DQ(z(1), z(2), z(3), z), with DQ(z1, z2, z3, z4) :=
z4 − z3

z4 − z1

/ z2 − z3

z2 − z1
.

(22)
The solution is a Möbius transformation of the loxodromic type, having besides one fixed point at ∞
another finite one S with (w − S) = a (z − S), where a is not real non-negative, and |a| 6= 1.

w(z) =
A

D
z +

B

D
, with

A = 2
(

(−2 +
√
3 ) + (−7 + 4

√
3 ) i
)

,

B = (−9 + 5
√
3 ) + (5 − 3

√
3 ) i ,

D = (1 −
√
3 ) + (−5 + 3

√
3 ) i . (23)

The determinant of this transformation is AD = 8 (−19 + 11
√
3). A, B and D are integers in Q(

√
3 ).

This is rewritten in the following Proposition.
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Proposition 3: Loxodromic map w

1) The unique conformal Möbius transformation w which maps the corners of triangle T0 to those of T1

(keeping the orientation), and hence Tk = △(Vk(2), Ok, Ok+1) to Tk+1, is given by the loxodromic map

w(z) = a z + b, with

a =
1

2

(

(3 −
√
3 ) + (−1 +

√
3 ) i
)

,

b =
1

2
(−1 +

√
3 ) (1 + i) = (1 − a) i . (24)

2) a = σ ei
π

6 , and |a| = σ = −1 +
√
3 6= 1. The finite fixed point of this map is S = i. S is the

common intersection point of all circles Ck.

Proof:

1) This is clear from the construction and the previous form of w from eq. (23), and the computation has
been checked with the help of Maple [5].

2) The values of a and |a| show that this Möbius transformation is loxodromic with finite fixed
point S = i. S has to lie on each circle Ck, for k = 0, 1, ... , because w maps Ck to Ck+1.

Corollary 4: Inverse map w[−1]

The inverse of map w[−1] of w is given by

w[−1](z) = a−1 z + (1 − a−1) i

=
1

4

[(

(3 +
√
3 )− (1 +

√
3 ) i
)

z +
(

−(1 +
√
3 ) + (1 −

√
3 ) i
)]

, for z ∈ C . (25)

Check: w[−1](w(z)) ≡ z.

With the help of the conformal map w it is now easy to prove that points z6 j (corresponding to the
centers O6 j) lie on the imaginary axis (the y0-axis).

Proposition 4: Centers z6 j lie on the imaginary axis

ℜ(z6 j) = 0, for j ∈ N0 .

Proof:

Compute w6(z) for z on the imaginary axis, z = y i, with real y: w6(y i) =
(

y + (209 − 120
√
3 ) (1 − y

)

) i
= (y + (O6)y0 (1 − y)) i. See the last column of Table 1 for (O6)y0 . Therefore, points on
the non-negative imaginary axis are mapped by w6 again on this axis. Because z0 = 0
lies on the imaginary axis also z6 j, for j = 1, 2, ... , have to lie on the imaginary axis.

Corollary 5: Number of centers for each revolution of the spiral

The number of centers 0k for each revolution is 12.

See Figure 4 for the first revolution, except for 012 on the imaginary axis where the second revolution
starts.

The discrete hexagon spiral can be interpolated between Ok and Ok+1 by circular arcs Ak of the circles

Ĉk(Vk(2), rk). See Figure 4. These arcs Ak belong to a sector of Ĉk of angle
5π

12
(see Lemma 3). The

precise form is given by
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Proposition 5: Interpolating circular arcs Ak

The circular arc with center Vk(2) and radius rk = σk which interpolates between the centers Ok and
Ok+1 of the hexagon Hk is given by

Ak = arc

(

Vk(2), rk,
(k − 2)π

6
,
(k − 1)π

6

)

. (26)

Proof:

From Lemma 3 the range of the angle ϕ is
π

6
. The angles are counted in the positive sense with respect

to the horizontal line, defined by the x0-axis. It is therefore sufficient to know the angle for one of the
lines Vk(2), Ok+1 which corresponds to the larger of the angles for arc Ak , For k = 1 this angle vanishes
because the y0 components of V1(2) and O2 coincide, they are σ r0. Hence the angle for arc A2 starts

with 0 (V2(2) is on the line segment V1(2), O2 ) and ends with
π

6
. This proves the given range for each

Ak.

This interpolation by circular arcs is continuous but has discontinuous curvature with increases at each

center Ok by a factor of 1/σ =
τ

2
=

1

2
(1 +

√
3) ≈ 1.366025403.

An interpolation with continuous curvature is given by the equal angle spiral (the logarithmic) spiral
(Jacob I Bernoulli: spira mirabilis), defined in the complex plane by LS(φ) = r(φ) exp(i φ), with
r(φ) = r(0) exp(−κφ) where the constant κ defines the constant angle α between the radial ray and the
tangent (taken in the direction of increasing angle φ) at any point of the spiral by α = arccot(−k). Here
the center of the logarithmic spiral is at the finite fixed point S and we choose a coordinate system (X, Y )
with the positive X direction along the vertical line (the y0-axis in the negative sense) and the positive
Y axis in the horizontal direction to the right, parallel to the positive x0 axis. I.e., X = −y0 + 1 and

Y = x0. In this system 00 = (1, 0) and r(0) = r0 = 1. The angle φ1 for 01 =

(

2 − σ

2
,
σ

2

)

(in the

(x0, y0) system) becomes in the (X, Y ) system
π

6
because tan(φ1) =

σ

2 − σ
=

√
3

3
. r
(π

6

)

= r1 = σ.

Therefore the constant of the logarithmic spiral is κ = − 6

π
log(σ) ≈ −0.5956953531. This corresponds

to arccot(−κ) ≈ 1.033548020, corresponding to about 59.216◦. To summarize:

Proposition 6: Logarithmic Spiral for non-negative k

1) In the coordinate system (X, Y ) of the logarithmic spiral with origin S and X = −y0 + 1,
Y = x0 the spokes Spk = S, Ok have lengths rk = σk. The angles φk are obtained by

sin(φk) = (Ok)x0
σ−k where σ−k =

(τ

2

)k
= a−k + b−k

√
3, where τ = 1 +

√
3 = −σ

and a−k =A002531(k)/2⌊ k+1

2 ⌋, b−k =A002530(k)/2⌊ k+1

2 ⌋ for k = 0, 1, ... . I.e., {sin(φk)}∞k=0 =

repeat

(

0,
1

2
,
1

2

√
3, 1,

1

2

√
3,

1

2
, 0, −1

2
, −1

2

√
3, −1, −1

2

√
3, −1

2

)

. The first period applies to the first

revolution of the spiral (sheet S1 in the complex plane). The corresponding angles are for the N-th

revolution (sheet SN in the complex plane) φk = 2π (N − 1) + π
6 k (mod 12), I.e., an addition of

π

6
or

30◦ from spoke Spk to Spk+1 for each k = 0, 1, ... . The periodicity modulo 12 is proved in part 6).

2) In the coordinate system (X, Y ) with origin S the hexagon centers are LS(φk) = Zk = σk exp(i φk) =
(ak + bk

√
3 ) exp(iπ6 k), for k = 0, 1, ... . This becomes with the help of the de Moivre formula, expressed

in terms of Chebyshev’s S polynomials evaluated at
√
3 :

Zk =
1

2

(

(3 bk Sk−1(
√
3 ) − 2 ak Sk−2(

√
3 )) + (ak Sk−1(

√
3 )− 2 bk Sk−2(

√
3 ))

√
3 +

(ak + bk
√
3 )Sk−1(

√
3 ) i
)

= (Ok)X + (Ok)Y i , (27)
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where ak and bk have been given in Lemma 2, and Chebyshev’s Sn(
√
3 ) polynomials entered in connection

with eq. (4). See Table 6 for the Cartesian coordinates ((Ok)X , (Ok)Y ) for k = 0, 1, ..., 12 .

3) The curvature K(φ) of the logarithmic spiral r(φ) = exp(−κφ) is itself a logarithmic spiral

K(φ) =
1√

1 + κ2
exp(+κφ) with κ = − 6

π
log(σ) . (28)

κ ≈ −0.5956953531 and K(0) = 1√
1+κ2

≈ 0.8591201770.

4) The conformal map W (Z) and its inverse W [−1] in the S-system are for Z ∈ C given by

W (Z) =
1

2

(

(3 −
√
3 ) + (−1 +

√
3 ) i
)

Z = aZ, (29)

W [−1](Z) =
1

4

(

(3 +
√
3 ) − (1 +

√
3 ) i
)

Z = a−1 Z . (30)

5) The relation between the conformal maps w and W is

W (Z) = i w(z(Z)) + 1, or w(z) = i (1 − W (Z(z)), (31)

with z(Z,Z) = z(Z) = i (1 − Z), or Z(z) = 1 + i z . (32)

6) Periodicity modulo 12 up to scaling for Zk:

Zk+12 l = σ12 l Zk , for k ∈ N0, l ∈ N0 . (33)

7) Periodicity modulo 12 up to scaling and translation for zk:

zk+12 l = σ12 l zk + i (1 − σ12 l) , for k ∈ N0, l ∈ N0 . (34)

Proof:

1) The length ratio of the spokes is clear: S is the intersection of all circles Ck, for k = 0, 1, ... , and
Ok is the center of Ck. The periodicity modulo 12 of the angles φk follows conjecturally from the sin(φk)
formula if the x0 component of Ok from eq. (17) is inserted. Later, under part 6), this is proved. The

values for the first revolution then show that in general φk+1 = φk +
π

6
. One has to take into account

the quadrants when interpreting the angles from the sin(φk) result.

2) This uses a standard reformulation of the trigonometric quantities obtained from the de Moivre formula
in terms of Chebyshev’s polynomials (they are the circular harmonics). The powers of σ have already
been treated in Lemma 2.

3) The formula for the curvature K of a curve in two-dimensional polar coordinates r = r(φ) is K(φ) =
r2 + 2 r′ 2 − r r′′

(r2 + r′ 2)3/2
, e.g., [1]. As explained in the preamble to this Proposition the logarithmic spiral is

r(φ) = exp(−κφ), and with r1 = r
(π

6

)

= σ one determines the constant −κ. The curvature K

becomes itself a logarithmic spiral with K(0) =
1√

1 + κ2
and the constant +κ.

4) Like for the conformal map w, the unique Möbius transformation W which maps the points
(S = 0, Z0, Z1) to (S, Z1, Z2) is obtained by solving the double quotient equation DQ(0, Z0, Z1, Z) =
DQ(0, Z1, Z2, W ) for W = W (Z). The real and imaginary parts of Zk, for k = 0, 1, ..., 12 are shown
in Table 6 as (Ok)X and (Ok)Y . In general W (Zk) = Zk+1, for k = 0, 1, ... . The same a as in eq. (24)
appears. The inverse map W [−1] satisfies W [−1](W (Z)) = Z, identically. Note that, in contrast to w,
the map W , hence W [−1], is linear.
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5) The coordinate transformation X = 1 − y0 and Y = x0 leads for z = x0 + y0 i and Z = X + Y i

to z(Z, Z) =
Z − Z

2 i
+

(

1 − Z + Z

2

)

i = i (1 − Z) + 0Z = i (1 − Z) = z(Z). With w(z) =

a z + (1 − a) i from eq. (24), one obtains w(z(Z)) = a (1−Z) i + (1 − a) i = i (1 − aZ) = i (1 − W (Z).
I.e., W (Z) = i w(z(Z)) + 1. Or, with Z(z) = 1 + z i, W (Z(z)) = i (a z + b) + (−i b + a) = i w(z) + 1,
because a − i b = 1. Therefore, w(z) = i (1 − W (Z(z)).

6) The linearity of W means that W [p](Z) = ap Z for the p-fold iterated map W for Z ∈ C. Now , with
Z0 = 1, one has Zk+12 l = W [k+12 l](1) = W [12 l](W [k](1)) = W [12 l](Zk) By linearity this is a12 l Zk =
(σ12)l Zk. Here a12 = σ12 even though a 6= σ. This follows from Z12 = W [12](1) = a12 1 = a12, and
by computation (see the last two columns of Table 6) Z12 = 86464 − 49920

√
3 + 0 i = σ12 by the first

column of this Table.

7) This periodicity modulo 12 up to scaling translates into a periodicity modulo 12 up to translation and
scaling for the centers zk of the circles Ck in the coordinate system (x0, y0) due to the transformation
given in part 5) applied to these centers, viz , zk(Zk) = i (1− Zk) for k ∈ N0. Therefore, zk+12 l = i (1−
Zk+12 l) = i (1 − σ12 l Zk) from part 4). With Z = Zk(zk) = 1 + zk i this becomes zk+12 l = σ12 l zk +
i (1 − σ12 l).

4 Hexagon Ascent

It is straightforward to continue the discrete spiral and its interpolations to negative k values. In the

coordinate system (x0, y0) with origin O0 = 0 the vectors ~v−k =
−−−−−−−−−→
O−(k+1), O−k have polar coordinates

following from extending eq. (1).

~v−k
.
= v−k

(

cos α−k

sin α−k

)

, with v−k = σ−k

√
2

2
, with α−k = (1 − 2 k)

π

12
for k ∈ N0, (35)

v−k = (a−k + b−k

√
3 )

√
2

2
, where a−k = A002531(k)/2⌊ k+1

2 ⌋, and b−k = A002530(k)/2⌊ k+1

2 ⌋ .

σ−k appeared already in Proposition 5, part 1). See also the second column of Table 3 for {a−k, b−k} for
k = 0, 1, ..., 12 .

This can be written as

~v−k = (σR−1)k+1 ~v1, with R−1 .
=

1

2

( √
3 1

−1
√
3

)

, for k ∈ N0 . (36)

For ~v1 and R see eq. (2). E.g., ~v0
.
= 1

4

(

τ
σ

)

.

The formula eq. (4) can be used to obtain R−k with the Chebyshev polynomials S−n(x) = −Sn−2(x),
for n ∈ N0, with S−1(x) = 0.

R−k = −Sk−1(
√
3 )R + Sk(

√
3 )12, for k = 0, 1, 2, ... . (37)

The components of ~v−k can be computed from this. Similarly to Corollary 1 these vectors are periodic
modulo 12 up to scaling:

Corollary 6 = 1′: ~v−k periodicity up to scaling

~v−(k+12 l) = (σ)−12 l ~v−k =
(τ

2

)12 l
~v−k, for k ∈ N0, l ∈ N0 . (38)

In order to obtain components of ~v−k which are integers in the real quadratic number field Q(
√
3 ) the

largest denominator 2s(k) with s(k) =A300068(k) has been multiplied. This sequence {s(k)}k≥ 0 is
obtained from the periodic sequence A300067, repeat(0, 0, 0, 1, 2, 2, ).
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Lemma 4: Sequence s

The formula for the members of sequence s and its o.g.f. is

s(k) = 2 +

⌊

k (mod 6)

3

⌋

+

⌊

k (mod 6)

4

⌋

+ 3

⌊

k

6

⌋

, for k ∈ N0 ,

O.g.f. : G(x) =
2 + x3 + x4 − x6

(1 − x6) (1 − x)
. (39)

Proof:

Due to the periodicity up to scaling (Corollary 6) it is sufficient to consider s(k), for k = 0, 1, ..., 11 .
These values are given from the first twelve vectors ~v−k by the second column of Table 7 with the first six
members 2, 2, 2, 3, 4, 4, and the other six ones are obtained by adding 3 to each member. The scaling

factor σ−12 l (see Proposition 6, part 1) and r−k in Table 6) has the denominator 2⌊ 12 l+1

2 ⌋ = 26 l because
gcd(A002531(k), A002530(k))= 1 due to the fact that they are denominators and numerators in lowest
terms of fractions (they give the continued fraction convergents of

√
3 ). Therefore, for each period of

length 12 a new factor 26 has to be multiplied, which means for the exponents that s(k + 12 l) = 6 l s(k).
Because in the first period 3 is added to the first six entries of s this results in a period of length 6 and
the periodicity up to scaling formula for s becomes s(k + 6 l) = 3 l s(k). This explains the last term in
the explicit formula for s. The second and third terms result from A300067, repeat(0, 0, 0, 1, 2, 2, ), and
the 2 has then to be added to produce the first six entries of the sequence s. The o.g.f. of {s(k) − 2}k≥ 0

is found from the obvious ones of A300067 and 3
⌊

k
6

⌋

.

For the scaled vectors components ~v−k, for k = 0, 1, ..., 12 , see Table 7.

The centers O−k are then given by

~O−k =
−−−−−→
O0, O−k = −

k−1
∑

j=0

~v−j , for k ∈ N , and ~O−0 = ~0 . (40)

Again, some scaling 2t(k) is applied to obtain integers in Q(
√
3 ) for the components of ~O−k. For k = 0,

the zero-vector ~0, no scaling is needed and t(0) = 0. The above reasoning for sequence s does not
apply immediately because O−k, like Ok, is not periodic up to scaling, but in the y0 component also a
translation appears (for Ok, in the complex plane called zk, see the Proposition 6, part 7)). Later, in
Proposition 9, part 5), it will be seen that for Z−k, in the coordinate system (X, Y ) with origin S, the
same sequence t is used to obtain integers in Q(

√
3 ) for the real and imaginary parts of 2t(k) Z−k. Then

by the coordinate transformation x0 = Y = ℑ(Z) and y0 = 1 − X = 1 − ℜ(Z) this will imply integer
coordinates in Q(

√
3 ) also for O−k. It is therefore again sufficient to consider t(k) for the first period

k = 1, 2, ..., 12 . These values are given in the fifth column of Table 7 as 2, 2, 2, 3, 4, 3, and the next
six numbers are obtained by adding 3 to these members. This results in the following formula based on
the period length 6 sequence A300069, repeat(0, 0, 0, 1, 2, 1, ) (but there the offset is 0, not 1).

Lemma 5: Sequence t

The formula for the members of sequence t and its o.g.f. is

t(0) = 0, and

t(k) = 2 +

⌊

k − 1 (mod 6)

3

⌋

+

⌊

k (mod 6)

5

⌋

+ 3

⌊

k − 1

6

⌋

= 2 + A174257(k), for k ∈ N .

O.g.f. : G(x) =
x (2 + 2x − x3)

(1 + x − x3 − x4) (1 − x)
. (41)

The proof is analogous to the one of the preceding Lemma 4 but the different offset has to be taken into
account.
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For the scaled vectors components 2t(k) ~O−k, for k = 0, 1, ..., 12 , see Table 7.

The square of the lengths 2k ρ2−k are given in Table 5.

The vertices of the hexagons H−k, for k ∈ N0, are given in the obvious extension of Proposition 2 with

σ−1 =
τ

2
as follows.

Proposition 7: Vertices of hexagons H−k, k ∈ N0,

~V−k(j) = ~O−k +
(τ

2

)k
R−k+2 j

(

1
0

)

, for k = 0, 1, ... , and j = 0, 1, ..., 5 . (42)

In order to obtain integers in Q(
√
3 ) after some scaling of the components of ~V−k(j) it turns out that

one needs only the three scaling sequences 2v0(k), 2v1(k), 2v2(k) for ~V−k(0), ~V−k(1), ~V−k(2), which also
work for ~V−k(3), ~V−k(4), ~V−k(5), respectively. Again it is sufficient for the sequences v0, v1 and v2 to
concentrate on the first six entries besides the values for k = 0 (the original hexagon H0) which are 0, 1
and 1, respectively (for ~V0(0) see Table 2 for k = 0 which does not need a scaling). The other six values
are obtained by adding 3, and for each new period of length 12 (starting with k = 1) another 3 is added.
We skip the proof (see the one for the sequence t which is similar), and give the results for these three
sequences.

Lemma 6: Sequences v0, v1, v2

v0(0) = 0, and

v0(k) = 1 +

⌊

k (mod 6)

2

⌋

+ 2

⌊

(k − 1) (mod 6)

5

⌋

+ 3

⌊

k − 1

6

⌋

= 1 + A300076(k − 1), for k ∈ N . (43)

v0(k) = A300068(k + 2), for k ∈ N0.

O.g.f. : G0(x) =
x (1 + x + x3)

(1 − x6) (1 − x)
. (44)

v1(0) = 1, and

v1(k) = 1 + (k − 1) (mod 6) −
⌊

(k − 1) (mod 6)

3

⌋

−
⌊

(k − 1) (mod 6)

5

⌋

+ 3

⌊

k − 1

6

⌋

= 1 + A300068(k + 1), for k ∈ N . (45)

O.g.f. : G1(x) =
1 + x2 + x3 + x5 − x6

(1 − x6) (1 − x)
. (46)

v2(0) = 1, and

v2(k) = 2 + 2

⌊

(k − 1) (mod 6)

5

⌋

+

⌊

k (mod 6)

3

⌋

+ 3

⌊

k − 1

6

⌋

= 2 + A300293(k − 1), for k ∈ N . (47)

O.g.f. : G2(x) =
1 + x + x3

(1 − x6) (1 − x)
. (48)

The o.g.f.s show that v2(k) = v0(k + 1), for k ∈ N0.

The discrete hexagon spiral with points O−k can again be interpolated by circular arcs A−k between O−k

and O−k+1. The centers of the circles are Ĉ−k = V−k(2) and the radius is r−k = σ−k =
(τ

2

)k
(see

Table 6 for 2
k+1

2 r−k. The precise statement is given in
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Proposition 8: Interpolating circular arcs A−k, k ∈ N0

The circular arcs A−k interpolation between the centers O−k and O−k+1 of the discrete hexagon spiral
are, for k ∈ N given by

A−k = arc

(

V−k(2), r−k,
−(k + 2)π

6
,
−(k + 1)π

6

)

. (49)

In Figure 6 this interpolation by arcs is shown in dashed blue (almost coinciding with the later discussed
logarithmic spiral shown there in solid red).

Proof:

This is simply the generalization of eq. (26) for negative k. The angle −2π

6
, the first angle for A0 becomes

the second angle for A−1 and then −π

6
has to be added in order to obtain the first angle. This continues for

each step A−k → A−(k+1).

Proposition 9: Logarithmic Spiral for non-positive k

1) The centers of the circles C−k are

Z−k = (W [−1])[k](1) = (a−1)k, for k ∈ N0, and a−1 =
τ

2
e−i k π

6 . (50)

2) The spokes Spk = S Z−k have lengths
(τ

2

)k
and the angles φ−k = −k π

6 , for k ∈ N0. For σ−k =
(τ

2

)k
see Proposition 6, part 1).

3) The explicit form, using de Moivre’s formula expressed in terms of the Chebyshev’s S polynomials
with negative index S−n(x) = −Sn−2(x) is like eq. (27) with k → −k:

Z−k =
1

2

(

(−3 b−k Sk−1(
√
3 ) + 2 a−k Sk(

√
3 )) + (−a−k Sk−1(

√
3 ) + 2 b−k Sk(

√
3 ))

√
3 −

(a−k + b−k

√
3 )Sk−1(

√
3 ) i
)

. (51)

4) The logarithmic spiral in the complex plane

LS(φ) = e(−κ+i)φ , with κ = −π

6
log(σ) . (52)

interpolates between all points Zk for k ∈ Z.

5) Periodicity modulo 12 up to scaling for Z−k:

Z−(k+12 l) =
(τ

2

)12 l
Z−k , for k ∈ N0, l ∈ N0 . (53)

Therefore one has eq. (33) with k ∈ Z and l ∈ Z .

Proof:

1) With the map W [−1] from Proposition 6, eq. (30), with a−1 from eq. (25), the hexagon centers O−k,
in the complex plane denoted by Z−k, satisfy

Z−k = W [−1](Zk−1) = W [−k](Z0) = W [−k](1) = (a−1)k = a−k, for k ∈ N0 . (54)

2) This is clear from part 1).

3) This is also clear, repeating the steps which led to Proposition 6, part 2), and the rewriting of S
polynomials with negative index, as given.

4) The logarithmic spiral, by construction of the maps W and W [−1], interpolates between all hexagon
centers Zk, for k ∈ Z.

5) The periodicity up to scaling is obvious from part 1).
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[9] Wikipedia, Möbius transformation,

https://en.wikipedia.org/wiki/M%C3%B6bius_transformation.

Keywords: Conformal Mapping, Hexagon, Spiral

Concerned with OEIS sequences A002530, A002531, A002605, A019892, A026150, A049310, A057079,
A174257, A300067, A300068, A300069, A300076, A300293.

13

https://www.itp.kit.edu/~wl/links.html
http://www.maplesoft.com/ 
http://mathworld.wolfram.com/Cayley-HamiltonTheorem.html
https://en.wikipedia.org/wiki/Cayley%E2%80%93Hamilton_theorem
https://en.wikipedia.org/wiki/M%C3%B6bius_transformation
http://oeis.org/A002530
http://oeis.org/A002531
http://oeis.org/A002605
http://oeis.org/A019892
http://oeis.org/A026150
http://oeis.org/A049310
http://oeis.org/A057079
http://oeis.org/A174257
http://oeis.org/A300067
http://oeis.org/A300068
http://oeis.org/A300069
http://oeis.org/A300076
http://oeis.org/A300293


Figure 1 Figure 2

Figure 1: Construction Hk → Hk+1: Ck(Ok, rk), Vk(0), (xk, yk),Dk = Vk(0), Vk(2), Vk(2), Ok+1 = rk,
Ck+1(Ok+1, rk+1 = σk, Vk+1(3), Vk+1(0), (xk+1, yk+1), ...

Figure 2: The first four circles and the first eleven centers.

Figure 3 Figure 4

Figure 3: The first three hexagons and the first four circles.

Figure 4: The discreet hexagon spiral of the first 13 centers. The interpolating circular arcs (dashed
blue) and the logarithmic spiral (solid red) are almost indistinguishable).
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Figure 5 Figure 6

Figure 5: The circle C0(0, 1) and the first six circles C−k(O−k, σ
−k), for k = 1, 2, ..., 6 .

Figure 6: The fixed point S, the center O0 = 0, the first 12 centers O−k with k = 1, 2, ..., 12 . The
interpolating circular arcs (dashed blue) and the logarithmic spiral (solid red) are almost indistinguish-
able.
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In the following tables all length have been divided by r0.

Table 1

k (−→v k )x0
(−→v k )y0 (Ok )x0

(Ok )y0
·1 , ·

√
3 ·1 , ·

√
3 ·1 , ·

√
3 ·1 , ·

√
3

1 −1/2 , 1/2 −1/2 , 1/2 −1/2 , 1/2 −1/2 , 1/2

2 −5/2 , 3/2 −1/2 , 1/2 −3 , 2 −1 , 1

3 −7 , 4 2 , −1 −10 , 6 1 , 0

4 −14 , 8 14 , −8 −24 , 14 15 , −8

5 −14 , 8 52 , −30 −38 , 22 67 , −38

6 38 , −22 142 , −82 0 , 0 209 , −120

7 284 , −164 284 , −164 284 , −164 493 , −284

8 1060 , −612 284 , −164 1344 , −776 777 , −448

9 2896 , −1672 −776 , 448 4240 , −2448 1 , 0

10 5792 , −3344 −5792 , 3344 10032 , −5792 −5791 , 3344

11 5792 , −3344 −21616 , 12480 15824 , −9136 −27407 , 15824

12 −15824 , 9136 −59056 , 34096 0 , 0 −86463 , 49920

...

Table 2

k (
−→
V k (0))x0

(
−→
V k (0))y0 ρ2

k
=
∣

∣

∣

−−−−→
O0, Ok

∣

∣

∣

2
tan ϕ̂k

·1 , ·
√
3 ·1 , ·

√
3 ·1 , ·

√
3 ·1 , ·

√
3

0 1 , 0 0 , 0 0 , 0 0 , 0

1 1 , 0 −1 , 1 2 , −1 1 , 0

2 −1 , 1 −4 , 3 25 , −14 1 , 1/3

3 −10 , 6 −9 , 6 209 , −120 5/4 , 3/4

4 −38 , 22 −9 , 6 1581 , −912 2 , 3/2

5 −104 , 60 29 , −16 11717 , −6764 19/4 , 15/4

6 −208 , 120 209 , −120 87881 , −50160 ∞
7 −208 , 1204 777 , −448 646361 , −373176 −71/8 , −49/8

8 568 , −328 2121 , −1224 4818705 , −2782080 −7 , −35/8

9 4240 , −2448 4241 , −24488 35955713 , −20759040 −265/32 , −153/32

10 15824 , −9136 4241 , −2448 268365505 , −154940896 −209/16 ,−173/24

11 43232 , −24960 −11583 , 6688 2003139041 , −1156512864 −989/32 ,−539/32

12 86464 , −49920 −86463 , 49920 14951869569 ,−8632465920 ∞
...
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Table 3

k (
−→
V k (1))x0

(
−→
V k (1))y0 (

−→
V k (2))x0

(
−→
V k (2))y0

·1 , ·
√
3 ·1 , ·

√
3 ·1 , ·

√
3 ·1 , ·

√
3

0 1/2 , 0 0 , 1/2 −1/2 , 0 0 , 1/2

1 −1/2 , 1/2 −3/2 , 3/2 −2 , 1 −1 , 1

2 −5 , 3 −4 , 3 −7 , 4 −1 , 1

3 −19 , 11 −4 , 3 −19 , 11 6 , −3

4 −52 , 30 15 , −8 −38 , 22 39 , −22

5 −104 , 60 105 , −60 −38 , 22 143 , −82

6 −104 , 60 389 , −224 104 , −60 389 , −224

7 284 , −164 1061 , −612 776 , −448 777 , −448

8 2120 , −1224 2121 , −1224 2896 , −1672 777 , −448

9 7912 , −4568 2121 , −1224 7912 , −4568 −2119 , 1224

10 21616 ,−12480 −5791 , 3344 15824 , −9136 −15823 , 9136

11 43232 ,−24960 −43231 , 24960 15824 , −9136 −59055 , 34096

12 43232 ,−24960 −161343 , 93152 −43232 , 24960 −161343 , 93152

...

Table 4

k (
−→
V k (3))x0

(
−→
V k (3))y0 (

−→
V k (4))x0

(
−→
V k (4))y0

·1 , ·
√
3 ·1 , ·

√
3 ·1 , ·

√
3 ·1 , ·

√
3

0 −1 , 0 0 , 0 −1/2 , 0 0 , −1/2

1 −2 , 1 0 , 0 −1/2 , 1/2 1/2 , −1/2

2 −5 , 3 2 , −1 −1 , 1 2 , −1

3 −10 , 6 11 , −6 −1 , 1 6 , −3

4 −10 , 6 39 , −22 4 , −2 15 , −8

5 28 , −16 105 , −60 28 , −16 29 , −16

6 208 , −120 209 , −120 104 , −60 29 , −16

7 776 , −448 209 , −120 284 , −164 −75 , 44

8 2120 , −1224 −567 , 328 568 , −328 −567 , 328

9 4240 , −2448 −4239 , 2448 568 , −328 −2119 , 1224

10 4240 , −2448 −15823 , 9136 −1552 , 896 −5791 , 3344

11 −11584 , 6688 −43231 , 24960 −11584 , 6688 −11583 , 6688

12 −86464 , 49920 −86463 , 49920 −43232 , 24960 −11583 , 6688

...
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Table 5

k (
−→
V k (5))x0

(
−→
V k (5))y0 2k ρ2−k

= 2k
∣

∣

∣

−−−−−→
O0, O−k

∣

∣

∣

2

·1 , ·
√
3 ·1 , ·

√
3 ·1 , ·

√
3 ·1 , ·

√
3

0 1/2 , 0 0 , −1/2 0 , 0 0 , −1/2

1 1 , 0 0 , 0 1 , 0 1/2 , −1/2

2 1 , 0 −1 , 1 7 , 2 2 , −1

3 −1 , 1 −4 , 3 34 , 15 6 , −3

4 −10 , 6 −9 , 6 141 , 72 15 , −8

5 −38 , 22 −9 , 6 526 , 285 29 , −16

6 −104 , 60 29 , −16 1831 , 1020 29 , −16

7 −208 , 120 209 , −120 6154 , 3479 −75 , 44

8 −208 , 120 777 , −448 20625 , 11760 −567 , 328

9 568 , −328 2121 , 1224 70738 , 40545 −2119 , 1224

10 4240 , −2448 4241 , −2448 251527 , 144628 −5791 , 3344

11 15824 , −9136 4241 , −2448 925354 , 533071 −11583 , 6688

12 43232 , −24960 −11583 , 6688 3481569 , 2007720 −11583 , 6688

...

Table 6

k rk =
∣

∣

∣

−−−→
S, Ok

∣

∣

∣ = σk 2⌊ k+1

2 ⌋ r−k (Ok )X (Ok )Y

·1 , ·
√
3 ·1 , ·

√
3 ·1 , ·

√
3 ·1 , ·

√
3

0 1 , 0 1 , 0 1 , 0 0 , 0

1 −1 , 1 1 , 1 3/2 , −1/2 −1/2 , 1/2

2 4 , −2 2 , 1 2 , −1 −3 , 2

3 −10 , 6 5 , 3 0 , 0 −10 , 6

4 28 , −16 7 , 4 −14 , 8 −24 , 14

5 −76 , 44 19 , 11 −66 , 38 −38 , 22

6 208 , −120 26 , 15 −208 , 120 0 , 0

7 −568 , 328 71 , 41 −492 , 284 284 , −164

8 1552 , −896 97 , 56 −776 , 448 1344 , −776

9 −4240 , 2448 265 , 153 0 , 0 4240 , −2448

10 11584 ,−6688 362 , 209 5792 , −3344 10032 , −5792

11 −31648 , 18271 989 , 571 27408 , −15824 15824 , −9136

12 86464 ,−49920 1351 , 780 86464 , −49920 0 , 0

...
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Table 7

k s(k) 2s(k) (−→v −k )x0
2s(k) (−→v −k )y0 t(k) 2t(k) (O−k )x0

2t(k) (O−k )y0
·1 , ·

√
3 ·1 , ·

√
3 ·1 , ·

√
3 ·1 , ·

√
3

0 2 1 , 1 −1 , 1 0 0 , 0 0 , 0

1 2 2 , 1 −1 , 0 2 −1 , −1 1 , −1

2 2 2 , 1 −2 , −1 2 −3 , −2 2 , −1

3 3 2 , 1 −7 , −4 2 −5 , −3 4 , 0

4 4 −5 , −3 −19 , −11 3 −12 , −7 15 , 4

5 4 −19 , −11 −19 , −11 4 −19 , −11 49 , 19

6 5 −71 , −41 −19 , −11 3 0 , 0 34 , 15

7 5 −97 , −56 26 , 15 5 71, 41 155 , 714

8 5 −97 , −56 97 , 56 5 168 , 97 126 , 56

9 6 −97 , −56 382 , 2098 5 265 , 153 32 , 0

10 7 265 , 153 989 , 571 6 627 , 362 −298 ,−209

11 7 989 , 571 989 , 571 7 989 , 571 −1585 ,−989

12 8 3691 , 2131 989 , 571 6 0 , 0 −1287 ,−780

...

Table 8

k v0(k) 2v0(k) (
−→
V −k (0))x0

2v0(k) (
−→
V −k (0))y0 2v0(k) (

−→
V −k (3))x0

2v0(k) (
−→
V −k (3))y0

·1 , ·
√
3 ·1 , ·

√
3 ·1 , ·

√
3 ·1 , ·

√
3

0 0 1 , 0 0 , 0 −1 , 0 0 , 0

1 1 1 , 0 0 , −1 −2 , −1 1 , 0

2 2 −1 , −1 −1 , −3 −5 , −3 5 , 1

3 2 −5 , −3 −1 , −3 −5 , −3 9 , 3

4 3 −19 , −11 3 , −3 −5 , −3 27 , 11

5 3 −26 , −15 15 , 4 7 , 4 34 , 15

6 3 −26 , −15 34 , 15 26 , 15 34 , 15

7 4 −26 , −15 113 , 56 97 , 56 42 , 15

8 5 71 , 41 297 , 153 256 , 153 −39 , −41

9 5 265 , 153 297 , 153 265 , 153 −233 , −153

10 6 989 , 571 329 , 153 265 , 153 −925 ,−571

11 6 1351 , 780 −298 , −209 −362 , −209 −1287 ,−780

12 6 1351 , 780 −1287 , −780 −1351 , −780 −1287 ,−780

...
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Table 9

k v1(k) 2v1(k) (
−→
V −k (1))x0

2v1(k) (
−→
V −k (1))y0 2v1(k) (

−→
V −k (4))x0

2v1(k) (
−→
V −k (4))y0

·1 , ·
√
3 ·1 , ·

√
3 ·1 , ·

√
3 ·1 , ·

√
3

0 1 1 , 0 0 , 1 −1 , 0 0 , −1

1 1 1 , 0 1 , 0 −2 , −1 0 , −1

2 2 1 , 0 2 , −1 −7 , −4 2 , −1

3 3 −1 , −1 3 , −3 −19 , −11 13 , 3

4 3 −5 , −3 3 , −3 −19 , −11 27 , 11

5 4 −19 , −11 11 , −3 −19 , −11 87 , 41

6 4 −26 , −15 23 , 4 26 , 15 113 , 56

7 4 −26 , −15 42 , 15 97 , 56 113 , 56

8 5 −26 , −15 129 , 56 362 , 209 129 , 56

9 6 71 , 41 329 , 153 989 , 571 −201 , −153

10 6 265 , 153 329 , 153 989 , 571 −925 ,−571

11 7 989 , 571 393 , 153 989 , 571 −3563 ,−2131

12 7 1351 , 780 −234 , −209 −1351 , −780 −4914 ,−2911

...

Table 10

k v2(k) 2v2(k) (
−→
V −k (2))x0

2v2(k) (
−→
V −k (2))y0 2v2(k) (

−→
V −k (5))x0

2v2(k) (
−→
V −k (5))y0

·1 , ·
√
3 ·1 , ·

√
3 ·1 , ·

√
3 ·1 , ·

√
3

0 1 −1 , 0 0 , 1 1 , 0 0 , −1

1 2 −1 , −1 3 , 1 −1 , −1 −1 , −3

2 2 −1 , −1 5 , 1 −5 , −3 −1 , −3

3 3 −1 , −1 13 , 3 −19 , −11 3 , −3

4 3 2 , 1 15 , 4 −26 , −15 15 , 4

5 3 7 , 41 15 , 4 −26 , −15 34 , 15

6 4 26 , 15 23 , 4 −26 , −15 113 , 56

7 5 71 , 41 13 , −11 71 , 41 297 , 153

8 5 71 , 41 −39 , −41 265 , 153 297 , 153

9 6 71 , 41 −201 , −153 989 , 571 329 , 153

10 6 −97 , −56 −298 , −209 1351 , 780 −298 ,−209

11 6 −362 , −209 −298 , −209 1351 , 780 −1287 ,−780

12 7 −1351 , −780 −234 , −209 1351 , 780 −4914 ,−2911

...
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