On a Conformal Mapping of Regular Hexagons and the Spiral of its Centers

Wolfdieter L a n g 1

Abstract

A sequence of regular hexagons used in a geometrical proof of the incommensurability of the shorter diagonal and the side of a hexagon is obtained by iteration of a conformal mapping. The centers form a discrete spiral and are interpolated by two continuous spirals, one with discontinuous curvature the other one a logarithmic spiral.

1 Introduction

A geometrical proof by contradiction of the incommensurability of the shorter diagonal of a regular hexagon and its side can be given by considering an infinite process of ever smaller hexagons. This is explained in *Havil*'s book [2] on irrationals. It shows the irrationality of $\sqrt{3}$, the length ratio between the a shorter diagonal and the side of a regular hexagon. We use this geometrical construction of a sequence of translated, rotated and down-scaled hexagons (always regular ones) $\{H_k\}_{k=0}^{\infty}$ inscribed in circles $\{C_k\}_{k=0}^{\infty}$ of radius $\sigma^k r_0$, with $\sigma = -1 + \sqrt{3}$ and centers $\{O_k\}_{k=0}^{\infty}$. These centers build a discrete spiral. The interpolation of the centers by a continuous curve is immediately given by patching together circular arcs of radius σ^k with one of the H_k vertices as centers. The curvature of this spiral is therefore discontinuous. Due to a conformal mapping of the loxodromic type whose iteration produces the sequence of hexagons an interpolating logarithmic spiral ensues with the finite fixed point S as its center. These two spirals are analogous to the ones in a regular pentagon with a sequence of golden triangles (or rectangles) shown, *e.g.*, in the book of *Livio* [4], as figures 40 and 41 on p. 119. For these triangles the conformal mapping has been given in [3]. The completion of the hexagon sequence and the spirals using negative k values is also considered.

2 Hexagon Descent

For the following geometrical construction see Figure 1 with k = 0. One starts with a circle C_0 with center O_0 and radius r_0 (this will be taken in the sequel as length unit. Hence, lengths will always be lengths ratios w.r.t. r_0), and inscribes a regular hexagon (the standard construction with a pair of compasses). The vertices of the hexagon (only regular hexagons will be considered) are denoted by $V_k(j)$, for j = 0, 1, ..., 5, taken in the positive (anti-clockwise) sense. The choice of $V_0(0)$ defines the non-negative x_0 axis as prolongation of $O_0, V_0(0)$. These Cartesian coordinates are named (x_0, y_0) (or in the complex plane $z = x_0 + y_0 i$).

The next (smaller) hexagon H_1 is inscribed in a circle C_1 with center O_1 and radius $r_1 = \sigma := -1 + \sqrt{3}$. This center is obtained by drawing the smaller diagonal in H_0 , viz, $D_0 = \overline{V_0(0)}, V_0(2)$, which has length $\sqrt{3}$, intersecting it with a circle of radius 1 around $V_0(2)$. Then on the circle $C_1(O_1, r_1)$, with radius

¹ wolfdieter.lang@partner.kit.edu, http://www/kit.edu/~wl/

 $r_1 = \overline{O_1, V_0(0)} = \sigma = -1 + \sqrt{3}$, the vertex $V_1(3)$ of H_1 is the intersection point with the x_0 axis, *i.e.*, the prolongation of $\overline{O_0 V_0(0)}$ or $\overline{V_0(3) V_0(0)}$. From this vertex $V_1(3)$ one finds the vertex $V_1(0)$ as antipode on C_1 . $V_1(5)$ coincides with $V_0(0)$.

In the second step the new center O_2 of H_2 is constructed in the same way by drawing the smaller diagonal $D_1 = \overline{V_1(0) V_1(2)}$ ($V_1(2)$ happens to lie on the diagonal D_0 , and D_1 is parallel to the x_0 axis). Then the circle around $V_1(2)$ with radius r_1 intersects D_1 at O_2 . The vertex $V_2(3)$ on $C_2(O_2, r_2)$, with $r_2 = \overline{O_2, V_1(0)} = \sigma r_1 = \sigma^2$), is the point of intersection of C_2 with the x_1 axis (prolongation of $\overline{O_1, V_1(0)}$). The antipode of $V_2(3)$ on C_2 is $V_2(0)$, etc.

This construction implies the following data (besides some obvious ones for a hexagon).

Lemma 1

1) $|V_0(2), V_0(0)| = \sqrt{3}, |O_1, V_0(0)| = \sigma := -1 + \sqrt{3}, |V_1(3), O_0| = \frac{\sigma^2}{2} = 2 - \sqrt{3}.$

2) The two circles C_0 and C_1 intersect at (1, 0) and S = (0, 1).

Proof: (In Cartesian coordinates (x_0, y_0))

1) $V_0(2) = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, hence $\angle (V_0(2), V_0(1), O_0) = \frac{\pi}{6}$. Therefore, $O_1 = \left(\frac{\sigma}{2}, \frac{\sigma}{2}\right)$, and $\angle (V_0(0), O_0, O_1) = \frac{\pi}{4}$. $\angle (V_0(0), V_1(3), O_1) = \frac{\pi}{6}$. From $\triangle (V_1(3), O_1, V_0(0))$ one has $|V_1(3), V_0(0)| = 2 \cdot \left(\frac{\sigma}{2}\sqrt{3}\right)$. On the other hand, the y_0 component of $V_1(0)$ is $\sin\left(\frac{\pi}{6}\right) 2\sigma = \sigma$, hence $V_0(0) = V_1(5)$, and $V_1(0), V_0(0)$ is parallel to the y_0 -axis. Therefore $\overline{V_1(0)}, V_1(2)$ is parallel to the x_0 -axis, and $V_1(2)$ with y_0 -component σ lies on the diagonal D_0 . $|V_1(3), O_0| = \sigma \frac{\sqrt{3}}{2} - \frac{\sigma}{2} = \frac{\sigma^2}{2} = 2 - \sqrt{3}$. 2) With $C_0: x_0^2 + y_0^2 = 1$ and $C_1: \left(x_0 - \frac{\sigma}{2}\right)^2 + \left(y_0 - \frac{\sigma}{2}\right)^2 = \sigma^2$ one finds the intersections (1, 0) and

S = (0, 1).Thus the new hexagon H_1 is obtained from the old one, H_0 , by a translation with $\vec{v}_0 := \overrightarrow{O_0, O_1} = \sigma (1, 1)^{\top}$ (a column vector), followed by a rotation about the axis perpendicular to the plane (the z-axis)

 $\sigma(1, 1)^{\top}$ (a column vector), followed by a rotation about the axis perpendicular to the plane (the z-axis) through O_1 by the angle $\angle(V_1(0), V_1(2), V_1(5)) = \frac{\pi}{6}$ and scaling down by a factor σ . This process is iterated to find H_{k+1} from H_k , for k = 0, 1, ... (see Figure 1).

Next, the vectors $\vec{v}_k = O_{k-1}, O_k$ are given in polar coordinates. Lemma 2: Vectors $\vec{v}_k, k = 1, 2, ...$

$$\vec{v}_k \doteq v_k \begin{pmatrix} \cos \alpha_k \\ \sin \alpha_k \end{pmatrix}, \text{ with } v_k = \sigma^k \frac{\sqrt{2}}{2}, \text{ and } \alpha_k = (2\,\mathbf{k}+1)\frac{\pi}{12}, \text{ for } \mathbf{k} \in \mathbb{N}, \tag{1}$$
$$v_k = (a_k + b_k\sqrt{3})\frac{\sqrt{2}}{2}, \text{ where } a_k = (-1)^k \underline{A026150}(k), \text{ and } b_k = (-1)^{k+1} \underline{A002605}(k).$$

For the first a_k and b_k entries see *Table 6*, column r_k . For the components of the first twelve vectors \vec{v}_k see *Table 1*.

Proof:

i) The polar angle α is obtained recursively from $\alpha_k = \alpha_{k-1} + \frac{\pi}{6}$, for k = 2, 3, ..., with input $\alpha_1 = \frac{\pi}{4}$ which follows from the rotation by an angle of $\frac{\pi}{6}$ to obtain H_k from H_{k-1} .

ii) The length v_k is obtained recursively from $v_k = v_{k-1}\sigma$ for k = 2, 3, ... with input $v_1 = \sigma \sqrt{2}$. One may take formally $v_0 = \frac{\sqrt{2}}{2}$ and then $v_k = \sigma^k v_0$, for k = (0), 1, 2, ... For $\{a_k\}_{k=0}^{\infty}$ and $\{b_k\}_{k=0}^{\infty}$ one obtains the mixed recurrence $a_k = -a_{k-1} + 3b_{k-1}$ and $b_k = a_{k-1} - b_{k-1}$, for k = 0, 1, ..., and inputs $a_0 = 1$ and $b_0 = 0$. This decouples, inserting $b_k + b_{k-1} = a_{k-1}$ into $a_k + a_{k-1}$, to the three term recurrences $b_k = 2(-b_{k-1} + b_{k-2})$ with inputs $b_0 = 0$ and $b_1 = 1$, and $a_k = 2(-a_{k-1} + a_{k-2})$ with inputs

 $a_0 = 1$ and $a_1 = -1$. The Binet formulae are, with $\tau := \frac{2}{\sigma} = 1 + \sqrt{3} =: -\overline{\sigma}, a_k = \frac{1}{2} \left(\sigma^k + (-\tau)^k \right)$ and $b_k = \frac{1}{2\sqrt{3}} \left(\sigma^k - (-\tau)^k \right)$. The o.g.f.s (ordinary generating functions) are $Ga(x) = \frac{1+x}{1+2x-2x^2}$ and $Gb(x) = \frac{x}{1+2x-2x^2}$. This explains the given result involving <u>A026150</u> and <u>A002605</u>.

In Cartesian coordinates one can write the recurrence as

$$\vec{v}_k = \sigma \mathbf{R} \vec{v}_{k-1}, \quad k = 2, 3, \dots \text{ with } \vec{v}_1 \doteq \frac{\sigma}{2} \begin{pmatrix} 1\\1 \end{pmatrix} \text{ and } \mathbf{R} \doteq \frac{1}{2} \begin{pmatrix} \sqrt{3} & -1\\1 & \sqrt{3} \end{pmatrix}.$$
 (2)

R is the rotation matrix for angle $\frac{\pi}{6}$. This leads to

$$\vec{v}_{k+1} = (\sigma \mathbf{R})^k \vec{v}_1, \text{ for } k = (0), 1, 2, \dots$$
 (3)

The powers of σ have been given above as $\sigma^k = a_k + b_k \sqrt{3}$. The powers of R are found as an application of the Cayley – Hamilton theorem, e.g., [8], [7]:

$$\mathbf{R}^{k} = S_{k-1}(\sqrt{3}) \mathbf{R} - S_{k-2}(\sqrt{3}) \mathbf{1}_{2}, \text{ for } k = 1, 2, ...,$$
(4)

Where $S_n(x)$ is the Chebyshev polynomial with coefficients given in <u>A049310</u> with $S_{-1}(x) = 0$ and $S_{-2}(x) = -1$. Here $S_{2l}(\sqrt{3}) = \underline{A057079}(l)$ and $S_{2l+1}(\sqrt{3}) = \underline{A019892}(l)\sqrt{3}$, for $k = 0, 1, \dots$. <u>A057079</u> and <u>A019892</u> are period length 6 sequences, repeat(1, 2, 1, -1, -2, -1) and repeat(1, 1, 0, -1, -1, 0), respectively. *I.e.*, $S_n(\sqrt{3}) = s_n + t_n\sqrt{3}$, with $\{s_n\}_{n=0}^{\infty} = repeat(1, 0, 2, 0, 1, 0, -1, 0, -2, 0, -1, 0)$ and $\{t_n\}_{n=0}^{\infty} = repeat(0, 1, 0, 1, 0, 0, 0, -1, 0, -1, 0, 0)$.

Corollary 1: \vec{v}_k Periodicity modulo 12 up to scaling

$$\vec{v}_{k+12l} = \sigma^{12l} \vec{v}_k, \text{ for } k \in \mathbb{N}, l \in \mathbb{N}_0.$$
(5)

This follows from the periodicity of the angle α_k in eq. (1).

The calculation of the \vec{v}_{2l} and \vec{v}_{2l+1} components w.r.t. the (x_0, y_0) coordinate system leads to

Proposition 1: Components of \vec{v}_k , k = 1, 2, ...

$$\vec{v}_{2l} \doteq \frac{1}{4} \begin{pmatrix} ve1(l) + we1(l)\sqrt{3} \\ ve2(l) + we2(l)\sqrt{3} \end{pmatrix}, \ l \ge 1, \quad \vec{v}_{2l+1} \doteq \frac{1}{4} \begin{pmatrix} vo1(l) + wo1(l)\sqrt{3} \\ vo2(l) + wo2(l)\sqrt{3} \end{pmatrix}, \ l \ge 0, \quad (6)$$

with
$$ve1(l) = -a_{2l}A(l-1) + 3b_{2l}(A(l-1) - 2B(l-2)),$$
 (7)

$$we1(l) = +a_{2l} \left(A(l-1) - 2B(l-2) \right) - b_{2l} A(l-1), \tag{8}$$

$$ve2(l) = +a_{2l}A(l-1) + 3b_{2l}(A(l-1) - 2B(l-2)), \qquad (9)$$

$$we2(l) = +a_{2l} \left(A(l-1) - 2B(l-2) \right) + b_{2l} A(l-1), \qquad (10)$$

and
$$vo1(l) = a_{2l+1} \left(3B(l-1) - 2A(l-1) \right) - 3b_{2l+1}B(l-1),$$
 (11)

$$wo1(l) = -a_{2l+1}B(l-1) + b_{2l+1}(3B(l-1) - 2A(l-1)), \qquad (12)$$

$$vo2(l) = +a_{2l+1} \left(3 B(l-1) - 2 A(l-1) \right) + 3 b_{2l+1} B(l-1),$$
(13)

$$wo2(l) = +a_{2l+1}B(l-1) + b_{2l+1}(3B(l-1) - 2A(l-1)), \qquad (14)$$

here
$$A(l) = S_{2l}(\sqrt{3}), \quad B(l) = S_{2(l-1)}(\sqrt{3})/\sqrt{3},$$

and a_k and b_k are given in Lemma 2.

W

See Table 1 for the coordinates of \vec{v}_k for k = 1, 2, ..., 12.

The center O_k of hexagon H_k , the endpoint of the vector $\vec{O}_k := \overrightarrow{O_0, O_k}$, is obtained from (undefined sums are set to 0)

$$\vec{O}_k = \sum_{j=1}^k \vec{v}_j, \quad k = 1, 2, \dots \text{ and } \vec{O}_0 = \vec{0},$$
 (15)

$$\vec{O}_k = \left(\mathbf{1}_2 + \sum_{j=1}^{k-1} (\sigma \mathbf{R})^j \right) \vec{v}_1.$$
 (16)

In the coordinate system (x_0, y_0) the components of center O_k follow from *Proposition 1*. Corollary 2: Components of O_k , k = 1, 2, ...

$$(O_k)_{x_0} = \frac{1}{4} \left(\sum_{j=1}^{\lfloor \frac{k}{2} \rfloor} (ve1(j) + we1(j)\sqrt{3}) + \sum_{j=0}^{\lfloor \frac{k-1}{2} \rfloor} (vo1(j) + wo1(j)\sqrt{3}) \right),$$

$$(O_k)_{y_0} = \frac{1}{4} \left(\sum_{j=1}^{\lfloor \frac{k}{2} \rfloor} (ve2(j) + we2(j)\sqrt{3}) + \sum_{j=0}^{\lfloor \frac{k-1}{2} \rfloor} (vo2(j) + wo2(j)\sqrt{3}) \right).$$
(17)

See *Table 1* for the components of O_k for k = 1, 2, ..., 12. It seems that the centers O_{6l} , for l = 0, 1, ... lie on the y_0 axis. This will be proved in the next section in *Proposition 4*.

The relation between \vec{O}_{k+12l} and Q_k will also be considered in the next section in *Proposition 6*, part 7), in the complex plane. It is a periodicity modulo 12 up to a scaling and a translation.

The vertices $V_k(j)$, for j = 0, 1, ..., 5, of the hexagon H_k follow from $\vec{V}_k(j) := \overrightarrow{O_0, V_k(j)}$. **Proposition 2: Vertices of hexagons** H_k

$$\vec{V}_k(j) = \vec{O}_k + \sigma^k \mathbf{R}^{k+2j} \begin{pmatrix} 1\\ 0 \end{pmatrix}$$
, for $k = 0, 1, ..., and j = 0, 1, ..., 5$. (18)

Proof:

For the hexagon H_k the vector $\overrightarrow{O_k, V_k(0)}$ is obtained from the unit vector in x_0 direction of the original coordinate system (x_0, y_0) for the first hexagon H_0 by k-fold rotation with $\mathbf{R} = \mathbf{R}(\frac{\pi}{6})$ and down-scaling by σ as

$$\overrightarrow{O_k, V_k(0)} = (\sigma \mathbf{R})^k \begin{pmatrix} 1\\ 0 \end{pmatrix}.$$
(19)

Then the vectors for the other vertices are obtained by repeated rotation of 60° , *i.e.*, by application of \mathbf{R}^2 leading to the assertion.

For the (x_0, y_0) components of $\vec{V}_k(0)$, for 0, 1, ..., 12, see *Table 2*, and for the other vertices, for j = 1, 2, ..., 5, see *Tables 3*, 4 and 5.

Lemma 3: Triangles T_k

The triangle $T_k = \triangle(O_k, V_k(2), O_{k+1})$, for k = 0, 1, ..., is isosceles with basis $v_{k+1} = \frac{1}{\sqrt{2}}\sigma^{k+1}$ and two sides of length $r_k = \sigma^k$. The angles are $\angle(O_{k+1}, V_k(2), O_k) = \frac{\pi}{6} = 30^\circ$ and twice $\frac{5\pi}{12} = 75^\circ$.

Proof: This is clear from the construction and the values for v_k given above in Lemma 2 and r_k . See Figure 1.

The polar coordinates of O_k , the center of hexagon H_k are given as follows. Note that $\varphi \in [0, 2\pi)$. The number of revolutions, using also $\varphi \geq 2\pi$ (sheets in the complex plane), will be considered in the next section.

Corollary 3: Polar coordinates of O_k

In the complex plane $O_k = z_k = \rho_k \exp(i\varphi_k)$ with $\rho_k = \left|\overrightarrow{O_0, O_k}\right|$, one has

$$\rho_{k} = \sqrt{((O_{k})_{x_{0}})^{2} + ((O_{k})_{y_{0}})^{2}}, \text{ with eq.(17)}$$

$$\varphi_{k} = \hat{\varphi}_{k} \text{ in quadrant I, } = \hat{\varphi}_{k} + \pi \text{ in quadrants II and III, } = \hat{\varphi}_{k} + 2\pi \text{ in quadrant IV, with}$$

$$\hat{\varphi}_{k} = \arctan\left(\frac{(O_{k})_{y_{0}}}{(O_{k})_{x_{0}}}\right).$$
(20)
(21)

 ρ_k^2 is integer in the real quadratic number field $\mathbb{Q}(\sqrt{3})$. For the values for k = 0, 1, ..., 12, see *Table* 2. The corresponding angles are $(\varphi_k \, 180/\pi)^\circ$. The values for $\tan \hat{\varphi}_k$ are elements of $\mathbb{Q}(\sqrt{3})$. For their components see also Table 2, for k = 1, 2, ..., 12 (for k = 0, with $z_0 = 0$, the value of $\hat{\varphi}_0$ is arbitrary; in *Table 2* we have set it to 0).

3 Conformal mapping and the Hexagon Spiral

The discrete spiral formed by the hexagon centers O_0 and O_k given in eq. (17) for k = 0, 1, ..., are shown as dots in Figure 2 for k = 0, 1, ..., 11. In the complex plane $\overline{\mathbb{C}} = \mathbb{C} \cup \infty$ these centers will be called $z_k = (O_k)_{x_0} + (O_k)_{y_0} i$. The construction of these hexagon described in sect. 1 is obtained by repeated application of a conformal *Möbius* transformation. It is determined by mapping the triangle T_0 of H_0 with vertices $z(1) = V_0(2) = \frac{1}{2}(-1 + \sqrt{3}i), z(2) = z_0 = 0 + 0i$ and $z(3) = z_1 = \frac{1}{2}(1 + 1i)$ to the translated, rotated and scaled triangle T_1 of H_1 with vertices $w(1) = V_1(2) = (-2 + \sqrt{3}) + (-1 + \sqrt{3})i$, $w(2) = z_1 = \frac{1}{2}(-1 + \sqrt{3} + (-1 + \sqrt{3})i)$ and $w(3) = z_2 = (-3 + 2\sqrt{3}) + (-1 + \sqrt{3})i$. See Figure 1 for these two triangles, setting k = 0. In general triangle T_k is mapped to T_{k+1} by this conformal transformation, especially $w(z_k) = z_{k+1}$, for k = 0, 1, ... The unique *Möbius* transformation which maps the vertices of T_0 to those of T_1 is given by solving the double quotient equation for w = w(z)(see. e.g., [6], [9])

$$DQ(w(1), w(2), w(3), w) = DQ(z(1), z(2), z(3), z), \text{ with } DQ(z1, z2, z3, z4) := \frac{z4 - z3}{z4 - z1} / \frac{z2 - z3}{z2 - z1}$$

The solution is a *Möbius* transformation of the loxodromic type, having besides one fixed point at ∞ another finite one S with (w - S) = a(z - S), where a is not real non-negative, and $|a| \neq 1$.

$$w(z) = \frac{A}{D}z + \frac{B}{D}, \text{ with} A = 2\left((-2 + \sqrt{3}) + (-7 + 4\sqrt{3})i\right), B = (-9 + 5\sqrt{3}) + (5 - 3\sqrt{3})i, D = (1 - \sqrt{3}) + (-5 + 3\sqrt{3})i.$$
(23)

The determinant of this transformation is $AD = 8(-19 + 11\sqrt{3})$. A, B and D are integers in $\mathbb{Q}(\sqrt{3})$. This is rewritten in the following *Proposition*.

Proposition 3: Loxodromic map w

1) The unique conformal *Möbius* transformation w which maps the corners of triangle T_0 to those of T_1 (keeping the orientation), and hence $T_k = \triangle(V_k(2), O_k, O_{k+1})$ to T_{k+1} , is given by the loxodromic map

$$w(z) = a z + b, \text{ with}$$

$$a = \frac{1}{2} \left((3 - \sqrt{3}) + (-1 + \sqrt{3})i \right),$$

$$b = \frac{1}{2} (-1 + \sqrt{3})(1 + i) = (1 - a)i.$$
(24)

2) $a = \sigma e^{i\frac{\pi}{6}}$, and $|a| = \sigma = -1 + \sqrt{3} \neq 1$. The finite fixed point of this map is S = i. S is the common intersection point of all circles C_k .

Proof:

1) This is clear from the construction and the previous form of w from eq. (23), and the computation has been checked with the help of Maple [5].

2) The values of a and |a| show that this *Möbius* transformation is loxodromic with finite fixed point S = i. S has to lie on each circle C_k , for k = 0, 1, ..., because w maps C_k to C_{k+1} .

Corollary 4: Inverse map $w^{[-1]}$

The inverse of map $w^{[-1]}$ of w is given by

$$w^{[-1]}(z) = a^{-1}z + (1 - a^{-1})i = \frac{1}{4} \left[\left((3 + \sqrt{3}) - (1 + \sqrt{3})i \right) z + \left(-(1 + \sqrt{3}) + (1 - \sqrt{3})i \right) \right], \text{ for } z \in \overline{\mathbb{C}}.$$
 (25)

Check: $w^{[-1]}(w(z)) \equiv z$.

With the help of the conformal map w it is now easy to prove that points z_{6j} (corresponding to the centers O_{6j}) lie on the imaginary axis (the y_0 -axis).

Proposition 4: Centers z_{6j} lie on the imaginary axis

$$\Re(z_{6\,i}) = 0$$
, for $j \in \mathbb{N}_0$.

Proof:

Compute $w^6(z)$ for z on the imaginary axis, z = yi, with real y: $w^6(yi) = (y + (209 - 120\sqrt{3})(1 - y))i$ = $(y + (O_6)_{y_0}(1 - y))i$. See the last column of *Table 1* for $(O_6)_{y_0}$. Therefore, points on the non-negative imaginary axis are mapped by w^6 again on this axis. Because $z_0 = 0$ lies on the imaginary axis also z_{6j} , for j = 1, 2, ..., have to lie on the imaginary axis.

Corollary 5: Number of centers for each revolution of the spiral

The number of centers 0_k for each revolution is 12.

See Figure 4 for the first revolution, except for 0_{12} on the imaginary axis where the second revolution starts.

The discrete hexagon spiral can be interpolated between O_k and O_{k+1} by circular arcs A_k of the circles $\hat{C}_k(V_k(2), r_k)$. See Figure 4. These arcs A_k belong to a sector of \hat{C}_k of angle $\frac{5\pi}{12}$ (see Lemma 3). The precise form is given by

Proposition 5: Interpolating circular arcs A_k

The circular arc with center $V_k(2)$ and radius $r_k = \sigma^k$ which interpolates between the centers O_k and O_{k+1} of the hexagon H_k is given by

$$A_{k} = \operatorname{arc}\left(V_{k}(2), r_{k}, \frac{(k-2)\pi}{6}, \frac{(k-1)\pi}{6}\right) .$$
(26)

Proof:

From Lemma 3 the range of the angle φ is $\frac{\pi}{6}$. The angles are counted in the positive sense with respect to the horizontal line, defined by the x_0 -axis. It is therefore sufficient to know the angle for one of the lines $\overline{V_k(2)}$, O_{k+1} which corresponds to the larger of the angles for arc A_k , For k = 1 this angle vanishes because the y_0 components of $V_1(2)$ and O_2 coincide, they are σr_0 . Hence the angle for arc A_2 starts with 0 ($V_2(2)$) is on the line segment $\overline{V_1(2)}$, $\overline{O_2}$) and ends with $\frac{\pi}{6}$. This proves the given range for each A_k .

This interpolation by circular arcs is continuous but has discontinuous curvature with increases at each center O_k by a factor of $1/\sigma = \frac{\tau}{2} = \frac{1}{2}(1 + \sqrt{3}) \approx 1.366025403$.

An interpolation with continuous curvature is given by the equal angle spiral (the logarithmic) spiral (Jacob I Bernoulli: spira mirabilis), defined in the complex plane by $LS(\phi) = r(\phi) \exp(i\phi)$, with $r(\phi) = r(0) \exp(-\kappa \phi)$ where the constant κ defines the constant angle α between the radial ray and the tangent (taken in the direction of increasing angle ϕ) at any point of the spiral by $\alpha = \operatorname{arccot}(-k)$. Here the center of the logarithmic spiral is at the finite fixed point S and we choose a coordinate system (X, Y) with the positive X direction along the vertical line (the y_0 -axis in the negative sense) and the positive Y axis in the horizontal direction to the right, parallel to the positive x_0 axis. *I.e.*, $X = -y_0 + 1$ and $Y = x_0$. In this system $0_0 = (1, 0)$ and $r(0) = r_0 = 1$. The angle ϕ_1 for $0_1 = \left(\frac{2-\sigma}{2}, \frac{\sigma}{2}\right)$ (in the (x_0, y_0) system) becomes in the (X, Y) system $\frac{\pi}{6}$ because $\tan(\phi_1) = \frac{\sigma}{2-\sigma} = \frac{\sqrt{3}}{3}$. $r\left(\frac{\pi}{6}\right) = r_1 = \sigma$. Therefore the constant of the logarithmic spiral is $\kappa = -\frac{6}{\pi} \log(\sigma) \approx -0.5956953531$. This corresponds

to $\operatorname{arccot}(-\kappa) \approx 1.033548020$, corresponding to about 59.216°. To summarize:

Proposition 6: Logarithmic Spiral for non-negative k

1) In the coordinate system (X, Y) of the logarithmic spiral with origin S and $X = -y_0 + 1$, $Y = x_0$ the spokes $Sp_k = \overline{S}, O_k$ have lengths $r_k = \sigma^k$. The angles ϕ_k are obtained by $\sin(\phi_k) = (O_k)_{x_0} \sigma^{-k}$ where $\sigma^{-k} = \left(\frac{\tau}{2}\right)^k = a_{-k} + b_{-k}\sqrt{3}$, where $\tau = 1 + \sqrt{3} = -\overline{\sigma}$ and $a_{-k} = \underline{A002531}(k)/2^{\lfloor \frac{k+1}{2} \rfloor}$, $b_{-k} = \underline{A002530}(k)/2^{\lfloor \frac{k+1}{2} \rfloor}$ for $k = 0, 1, \dots$. *I.e.*, $\{\sin(\phi_k)\}_{k=0}^{\infty} =$ repeat $\left(0, \frac{1}{2}, \frac{1}{2}\sqrt{3}, 1, \frac{1}{2}\sqrt{3}, \frac{1}{2}, 0, -\frac{1}{2}, -\frac{1}{2}\sqrt{3}, -1, -\frac{1}{2}\sqrt{3}, -\frac{1}{2}\right)$. The first period applies to the first revolution of the spiral (sheet S_1 in the complex plane). The corresponding angles are for the N-th revolution (sheet S_N in the complex plane) $\phi_k = 2\pi (N-1) + \frac{\pi}{6}k \pmod{12}$, *I.e.*, an addition of $\frac{\pi}{6}$ or 30° from spoke Sp_k to Sp_{k+1} for each $k = 0, 1, \dots$. The periodicity modulo 12 is proved in part **6**).

2) In the coordinate system (X, Y) with origin S the hexagon centers are $LS(\phi_k) = Z_k = \sigma^k \exp(i\phi_k) = (a_k + b_k \sqrt{3}) \exp(i\frac{\pi}{6}k)$, for k = 0, 1, ... This becomes with the help of the *de Moivre* formula, expressed in terms of Chebyshev's S polynomials evaluated at $\sqrt{3}$:

$$Z_{k} = \frac{1}{2} \left((3 b_{k} S_{k-1}(\sqrt{3}) - 2 a_{k} S_{k-2}(\sqrt{3})) + (a_{k} S_{k-1}(\sqrt{3}) - 2 b_{k} S_{k-2}(\sqrt{3})) \sqrt{3} + (a_{k} + b_{k} \sqrt{3}) S_{k-1}(\sqrt{3}) i \right) = (O_{k})_{X} + (O_{k})_{Y} i,$$
(27)

where a_k and b_k have been given in Lemma 2, and Chebyshev's $S_n(\sqrt{3})$ polynomials entered in connection with eq. (4). See Table 6 for the Cartesian coordinates $((O_k)_X, (O_k)_Y)$ for k = 0, 1, ..., 12.

3) The curvature $K(\phi)$ of the logarithmic spiral $r(\phi) = exp(-\kappa \phi)$ is itself a logarithmic spiral

$$K(\phi) = \frac{1}{\sqrt{1+\kappa^2}} \exp(+\kappa\phi) \quad \text{with} \quad \kappa = -\frac{6}{\pi} \log(\sigma) \;. \tag{28}$$

 $\kappa \approx -0.5956953531$ and $K(0) = \frac{1}{\sqrt{1+\kappa^2}} \approx 0.8591201770.$

4) The conformal map W(Z) and its inverse $W^{[-1]}$ in the S-system are for $Z \in \overline{\mathbb{C}}$ given by

$$W(Z) = \frac{1}{2} \left((3 - \sqrt{3}) + (-1 + \sqrt{3})i \right) Z = a Z,$$
(29)

$$W^{[-1]}(Z) = \frac{1}{4} \left((3 + \sqrt{3}) - (1 + \sqrt{3})i \right) Z = a^{-1} Z.$$
(30)

5) The relation between the conformal maps w and W is

$$W(Z) = i w(z(Z)) + 1$$
, or $w(z) = i (1 - W(Z(z)))$, (31)

with
$$z(Z,Z) = z(Z) = i(1-Z)$$
, or $Z(z) = 1 + iz$. (32)

6) Periodicity modulo 12 up to scaling for Z_k :

$$Z_{k+12l} = \sigma^{12l} Z_k, \text{ for } k \in \mathbb{N}_0, l \in \mathbb{N}_0.$$

$$(33)$$

7) Periodicity modulo 12 up to scaling and translation for z_k :

$$z_{k+12l} = \sigma^{12l} z_k + i(1 - \sigma^{12l}), \text{ for } k \in \mathbb{N}_0, l \in \mathbb{N}_0.$$
(34)

Proof:

1) The length ratio of the spokes is clear: S is the intersection of all circles C_k , for k = 0, 1, ..., and O_k is the center of C_k . The periodicity modulo 12 of the angles ϕ_k follows conjecturally from the $\sin(\phi_k)$ formula if the x_0 component of O_k from eq. (17) is inserted. Later, under part 6), this is proved. The values for the first revolution then show that in general $\phi_{k+1} = \phi_k + \frac{\pi}{6}$. One has to take into account the quadrants when interpreting the angles from the $\sin(\phi_k)$ result.

2) This uses a standard reformulation of the trigonometric quantities obtained from the *de Moivre* formula in terms of *Chebyshev*'s polynomials (they are the circular harmonics). The powers of σ have already been treated in *Lemma 2*.

3) The formula for the curvature K of a curve in two-dimensional polar coordinates $r = r(\phi)$ is $K(\phi) = \frac{r^2 + 2r'^2 - rr''}{(r^2 + r'^2)^{3/2}}$, e.g., [1]. As explained in the preamble to this *Proposition* the logarithmic spiral is $r(\phi) = exp(-\kappa \phi)$, and with $r_1 = r\left(\frac{\pi}{6}\right) = \sigma$ one determines the constant $-\kappa$. The curvature K becomes itself a logarithmic spiral with $K(0) = \frac{1}{\sqrt{1 + \kappa^2}}$ and the constant $+\kappa$.

4) Like for the conformal map w, the unique *Möbius* transformation W which maps the points $(S = 0, Z_0, Z_1)$ to (S, Z_1, Z_2) is obtained by solving the double quotient equation $DQ(0, Z_0, Z_1, Z) = DQ(0, Z_1, Z_2, W)$ for W = W(Z). The real and imaginary parts of Z_k , for k = 0, 1, ..., 12 are shown in *Table 6* as $(O_k)_X$ and $(O_k)_Y$. In general $W(Z_k) = Z_{k+1}$, for k = 0, 1, The same a as in eq. (24) appears. The inverse map $W^{[-1]}$ satisfies $W^{[-1]}(W(Z)) = Z$, identically. Note that, in contrast to w, the map W, hence $W^{[-1]}$, is linear.

5) The coordinate transformation $X = 1 - y_0$ and $Y = x_0$ leads for $z = x_0 + y_0 i$ and Z = X + Y i to $z(Z, \overline{Z}) = \frac{Z - \overline{Z}}{2i} + \left(1 - \frac{Z + \overline{Z}}{2}\right)i = i(1 - Z) + 0\overline{Z} = i(1 - Z) = z(Z)$. With w(z) = az + (1 - a)i from eq. (24), one obtains w(z(Z)) = a(1 - Z)i + (1 - a)i = i(1 - aZ) = i(1 - W(Z)). *I.e.*, W(Z) = iw(z(Z)) + 1. Or, with Z(z) = 1 + zi, W(Z(z)) = i(az + b) + (-ib + a) = iw(z) + 1, because a - ib = 1. Therefore, w(z) = i(1 - W(Z(z)).

6) The linearity of W means that $W^{[p]}(Z) = a^p Z$ for the p-fold iterated map W for $Z \in \overline{\mathbb{C}}$. Now, with $Z_0 = 1$, one has $Z_{k+12l} = W^{[k+12l]}(1) = W^{[12l]}(W^{[k]}(1)) = W^{[12l]}(Z_k)$ By linearity this is $a^{12l} Z_k = (\sigma^{12})^l Z_k$. Here $a^{12} = \sigma^{12}$ even though $a \neq \sigma$. This follows from $Z_{12} = W^{[12]}(1) = a^{12} 1 = a^{12}$, and by computation (see the last two columns of Table 6) $Z_{12} = 86464 - 49920\sqrt{3} + 0i = \sigma^{12}$ by the first column of this Table.

7) This periodicity modulo 12 up to scaling translates into a periodicity modulo 12 up to translation and scaling for the centers z_k of the circles C_k in the coordinate system (x_0, y_0) due to the transformation given in part 5) applied to these centers, viz, $z_k(Z_k) = i(1 - Z_k)$ for $k \in \mathbb{N}_0$. Therefore, $z_{k+12l} = i(1 - Z_{k+12l}) = i(1 - \sigma^{12l} Z_k)$ from part 4). With $Z = Z_k(z_k) = 1 + z_k i$ this becomes $z_{k+12l} = \sigma^{12l} z_k + i(1 - \sigma^{12l})$.

4 Hexagon Ascent

It is straightforward to continue the discrete spiral and its interpolations to negative k values. In the coordinate system (x_0, y_0) with origin $O_0 = 0$ the vectors $\vec{v}_{-k} = \overrightarrow{O_{-(k+1)}}, \overrightarrow{O_{-k}}$ have polar coordinates following from extending eq. (1).

$$\vec{v}_{-k} \doteq v_{-k} \begin{pmatrix} \cos \alpha_{-k} \\ \sin \alpha_{-k} \end{pmatrix}, \text{ with } v_{-k} = \sigma^{-k} \frac{\sqrt{2}}{2}, \text{ with } \alpha_{-k} = (1 - 2k) \frac{\pi}{12} \text{ for } k \in \mathbb{N}_0, \quad (35)$$
$$v_{-k} = (a_{-k} + b_{-k} \sqrt{3}) \frac{\sqrt{2}}{2}, \text{ where } a_{-k} = \underline{A002531}(k)/2^{\left\lfloor \frac{k+1}{2} \right\rfloor}, \text{ and } b_{-k} = \underline{A002530}(k)/2^{\left\lfloor \frac{k+1}{2} \right\rfloor}.$$

 σ^{-k} appeared already in *Proposition 5*, part 1). See also the second column of *Table 3* for $\{a_{-k}, b_{-k}\}$ for k = 0, 1, ..., 12.

This can be written as

$$\vec{v}_{-k} = (\sigma \mathbf{R}^{-1})^{k+1} \vec{v}_1, \text{ with } \mathbf{R}^{-1} \doteq \frac{1}{2} \begin{pmatrix} \sqrt{3} & 1\\ -1 & \sqrt{3} \end{pmatrix}, \text{ for } k \in \mathbb{N}_0.$$
 (36)

For \vec{v}_1 and **R** see eq. (2). *E.g.*, $\vec{v}_0 \doteq \frac{1}{4} \begin{pmatrix} \tau \\ \sigma \end{pmatrix}$.

The formula eq. (4) can be used to obtain $\mathbf{R}^{-\mathbf{k}}$ with the Chebyshev polynomials $S_{-n}(x) = -S_{n-2}(x)$, for $n \in \mathbb{N}_0$, with $S_{-1}(x) = 0$.

$$\mathbf{R}^{-k} = -S_{k-1}(\sqrt{3}) \,\mathbf{R} + S_k(\sqrt{3}) \,\mathbf{1}_2, \text{ for } k = 0, 1, 2, \dots.$$
(37)

The components of \vec{v}_{-k} can be computed from this. Similarly to *Corollary 1* these vectors are periodic modulo 12 up to scaling:

Corollary 6 = 1': \vec{v}_{-k} periodicity up to scaling

$$\vec{v}_{-(k+12l)} = (\sigma)^{-12l} \vec{v}_{-k} = \left(\frac{\tau}{2}\right)^{12l} \vec{v}_{-k}, \text{ for } k \in \mathbb{N}_0, \ l \in \mathbb{N}_0.$$
(38)

In order to obtain components of \vec{v}_{-k} which are integers in the real quadratic number field $\mathbb{Q}(\sqrt{3})$ the largest denominator $2^{s(k)}$ with $s(k) = \underline{A300068}(k)$ has been multiplied. This sequence $\{s(k)\}_{k\geq 0}$ is obtained from the periodic sequence $\underline{A300067}$, repeat(0, 0, 0, 1, 2, 2,).

Lemma 4: Sequence s

The formula for the members of sequence s and its o.g.f. is

$$s(k) = 2 + \left\lfloor \frac{k \pmod{6}}{3} \right\rfloor + \left\lfloor \frac{k \pmod{6}}{4} \right\rfloor + 3 \left\lfloor \frac{k}{6} \right\rfloor, \text{ for } k \in \mathbb{N}_0,$$

O.g.f.: $G(x) = \frac{2 + x^3 + x^4 - x^6}{(1 - x^6)(1 - x)}.$ (39)

Proof:

Due to the periodicity up to scaling (Corollary 6) it is sufficient to consider s(k), for k = 0, 1, ..., 11. These values are given from the first twelve vectors \vec{v}_{-k} by the second column of Table 7 with the first six members 2, 2, 2, 3, 4, 4, and the other six ones are obtained by adding 3 to each member. The scaling factor σ^{-12l} (see Proposition 6, part 1) and \mathbf{r}_{-k} in Table 6) has the denominator $2^{\lfloor \frac{12l+1}{2} \rfloor} = 2^{6l}$ because $gcd(\underline{A002531}(k), \underline{A002530}(k)) = 1$ due to the fact that they are denominators and numerators in lowest terms of fractions (they give the continued fraction convergents of $\sqrt{3}$). Therefore, for each period of length 12 a new factor 2^6 has to be multiplied, which means for the exponents that s(k + 12l) = 6l s(k). Because in the first period 3 is added to the first six entries of s this results in a period of length 6 and the periodicity up to scaling formula for s becomes s(k + 6l) = 3l s(k). This explains the last term in the explicit formula for s. The second and third terms result from $\underline{A300067}$, repeat(0, 0, 0, 1, 2, 2,), and the 2 has then to be added to produce the first six entries of the sequence s. The o.g.f. of $\{s(k) - 2\}_{k\geq 0}$ is found from the obvious ones of $\underline{A300067}$ and $3 \lfloor \frac{k}{6} \rfloor$.

For the scaled vectors components \vec{v}_{-k} , for k = 0, 1, ..., 12, see Table 7.

The centers O_{-k} are then given by

$$\vec{O}_{-k} = \overrightarrow{O_0, O_{-k}} = -\sum_{j=0}^{k-1} \vec{v}_{-j}, \text{ for } k \in \mathbb{N}, \text{ and } \vec{O}_{-0} = \vec{0}.$$
 (40)

Again, some scaling $2^{t(k)}$ is applied to obtain integers in $\mathbb{Q}(\sqrt{3})$ for the components of \vec{O}_{-k} . For k = 0, the zero-vector $\vec{0}$, no scaling is needed and t(0) = 0. The above reasoning for sequence s does not apply immediately because O_{-k} , like O_k , is not periodic up to scaling, but in the y_0 component also a translation appears (for O_k , in the complex plane called z_k , see the *Proposition 6*, part 7)). Later, in *Proposition 9*, part 5), it will be seen that for Z_{-k} , in the coordinate system (X, Y) with origin S, the same sequence t is used to obtain integers in $\mathbb{Q}(\sqrt{3})$ for the real and imaginary parts of $2^{t(k)} Z_{-k}$. Then by the coordinate transformation $x_0 = Y = \Im(Z)$ and $y_0 = 1 - X = 1 - \Re(Z)$ this will imply integer coordinates in $\mathbb{Q}(\sqrt{3})$ also for O_{-k} . It is therefore again sufficient to consider t(k) for the first period k = 1, 2, ..., 12. These values are given in the fifth column of Table 7 as 2, 2, 2, 3, 4, 3, and the next six numbers are obtained by adding 3 to these members. This results in the following formula based on the period length 6 sequence <u>A300069</u>, repeat(0, 0, 0, 1, 2, 1,) (but there the offset is 0, not 1).

Lemma 5: Sequence t

The formula for the members of sequence t and its o.g.f. is

$$t(0) = 0, \text{ and}$$

$$t(k) = 2 + \left\lfloor \frac{k - 1 \pmod{6}}{3} \right\rfloor + \left\lfloor \frac{k \pmod{6}}{5} \right\rfloor + 3 \left\lfloor \frac{k - 1}{6} \right\rfloor = 2 + \underline{A174257}(k), \text{ for } k \in \mathbb{N}.$$

$$O.g.f.: \quad G(x) = \frac{x \left(2 + 2x - x^3\right)}{\left(1 + x - x^3 - x^4\right)\left(1 - x\right)}.$$
(41)

The proof is analogous to the one of the preceding *Lemma 4* but the different offset has to be taken into account.

For the scaled vectors components $2^{t(k)} \vec{O}_{-k}$, for k = 0, 1, ..., 12, see Table 7. The square of the lengths $2^k \rho_{-k}^2$ are given in Table 5.

The vertices of the hexagons H_{-k} , for $k \in \mathbb{N}_0$, are given in the obvious extension of *Proposition* 2 with $\sigma^{-1} = \frac{\tau}{2}$ as follows.

Proposition 7: Vertices of hexagons $H_{-k}, k \in \mathbb{N}_0$,

$$\vec{V}_{-k}(j) = \vec{O}_{-k} + \left(\frac{\tau}{2}\right)^k \mathbf{R}^{-k+2j} \begin{pmatrix} 1\\0 \end{pmatrix}, \text{ for } k = 0, 1, \dots, \text{ and } j = 0, 1, \dots, 5.$$
(42)

In order to obtain integers in $\mathbb{Q}(\sqrt{3})$ after some scaling of the components of $\vec{V}_{-k}(j)$ it turns out that one needs only the three scaling sequences $2^{v0(k)}$, $2^{v1(k)}$, $2^{v2(k)}$ for $\vec{V}_{-k}(0)$, $\vec{V}_{-k}(1)$, $\vec{V}_{-k}(2)$, which also work for $\vec{V}_{-k}(3)$, $\vec{V}_{-k}(4)$, $\vec{V}_{-k}(5)$, respectively. Again it is sufficient for the sequences v0, v1 and v2 to concentrate on the first six entries besides the values for k = 0 (the original hexagon H_0) which are 0, 1 and 1, respectively (for $\vec{V}_0(0)$ see *Table 2* for k = 0 which does not need a scaling). The other six values are obtained by adding 3, and for each new period of length 12 (starting with k = 1) another 3 is added. We skip the proof (see the one for the sequence t which is similar), and give the results for these three sequences.

Lemma 6: Sequences v0, v1, v2

$$v0(0) = 0, \text{ and} v0(k) = 1 + \left\lfloor \frac{k \pmod{6}}{2} \right\rfloor + 2 \left\lfloor \frac{(k-1) \pmod{6}}{5} \right\rfloor + 3 \left\lfloor \frac{k-1}{6} \right\rfloor = 1 + \underline{A300076}(k-1), \text{ for } k \in \mathbb{N}.$$
(43)

$$v0(k) = \underline{A300068}(k+2), \text{ for } k \in \mathbb{N}_0.$$

O.g.f.: $G0(x) = \frac{x(1+x+x^3)}{(1-x^6)(1-x)}.$ (44)

$$v1(0) = 1$$
, and

$$v1(k) = 1 + (k-1) \pmod{6} - \left\lfloor \frac{(k-1) \pmod{6}}{3} \right\rfloor - \left\lfloor \frac{(k-1) \pmod{6}}{5} \right\rfloor + 3 \left\lfloor \frac{k-1}{6} \right\rfloor$$

= 1 + A300068(k+1), for $k \in \mathbb{N}$. (45)

O.g.f.:
$$G1(x) = \frac{1 + x^2 + x^3 + x^5 - x^6}{(1 - x^6)(1 - x)}$$
 (46)

$$v2(0) = 1, \text{ and} v2(k) = 2 + 2 \left\lfloor \frac{(k-1) \pmod{6}}{5} \right\rfloor + \left\lfloor \frac{k \pmod{6}}{3} \right\rfloor + 3 \left\lfloor \frac{k-1}{6} \right\rfloor = 2 + \underline{A300293}(k-1), \text{ for } k \in \mathbb{N}.$$
(47)

O.g.f.:
$$G2(x) = \frac{1+x+x^3}{(1-x^6)(1-x)}$$
 (48)

The *o.g.f.s* show that v2(k) = v0(k+1), for $k \in \mathbb{N}_0$.

The discrete hexagon spiral with points O_{-k} can again be interpolated by circular arcs A_{-k} between O_{-k} and O_{-k+1} . The centers of the circles are $\hat{C}_{-k} = V_{-k}(2)$ and the radius is $r_{-k} = \sigma^{-k} = \left(\frac{\tau}{2}\right)^k$ (see *Table 6* for $2^{\frac{k+1}{2}}r_{-k}$. The precise statement is given in

Proposition 8: Interpolating circular arcs A_{-k} , $k \in \mathbb{N}_0$

The circular arcs A_{-k} interpolation between the centers O_{-k} and O_{-k+1} of the discrete hexagon spiral are, for $k \in \mathbb{N}$ given by

$$A_{-k} = \operatorname{arc}\left(V_{-k}(2), r_{-k}, \frac{-(k+2)\pi}{6}, \frac{-(k+1)\pi}{6}\right).$$
(49)

In Figure 6 this interpolation by arcs is shown in dashed blue (almost coinciding with the later discussed logarithmic spiral shown there in solid red).

Proof:

This is simply the generalization of eq. (26) for negative k. The angle $-\frac{2\pi}{6}$, the first angle for A_0 becomes the second angle for A_{-1} and then $-\frac{\pi}{6}$ has to be added in order to obtain the first angle. This continues for each step $A_{-k} \to A_{-(k+1)}$.

Proposition 9: Logarithmic Spiral for non-positive k

1) The centers of the circles C_{-k} are

$$Z_{-k} = (W^{[-1]})^{[k]}(1) = (a^{-1})^k, \text{ for } k \in \mathbb{N}_0, \text{ and } a_{-1} = \frac{\tau}{2} e^{-ik\frac{\pi}{6}}.$$
(50)

2) The spokes $Sp_k = \overline{SZ_{-k}}$ have lengths $\left(\frac{\tau}{2}\right)^k$ and the angles $\phi_{-k} = -k\frac{\pi}{6}$, for $k \in \mathbb{N}_0$. For $\sigma^{-k} = \left(\frac{\tau}{2}\right)^k$ see *Proposition 6*, part 1).

3) The explicit form, using de Moivre's formula expressed in terms of the Chebyshev's S polynomials with negative index $S_{-n}(x) = -S_{n-2}(x)$ is like eq. (27) with $k \to -k$:

$$Z_{-k} = \frac{1}{2} \left(\left(-3 \, b_{-k} \, S_{k-1}(\sqrt{3}) + 2 \, a_{-k} \, S_k(\sqrt{3}) \right) + \left(-a_{-k} \, S_{k-1}(\sqrt{3}) + 2 \, b_{-k} \, S_k(\sqrt{3}) \right) \sqrt{3} - \left(a_{-k} + b_{-k} \, \sqrt{3} \right) S_{k-1}(\sqrt{3}) \, i \right) \,.$$

$$(51)$$

4) The logarithmic spiral in the complex plane

$$LS(\phi) = e^{(-\kappa+i)\phi}, \text{ with } \kappa = -\frac{\pi}{6}\log(\sigma).$$
(52)

interpolates between all points Z_k for $k \in \mathbb{Z}$.

5) Periodicity modulo 12 up to scaling for Z_{-k} :

$$Z_{-(k+12l)} = \left(\frac{\tau}{2}\right)^{12l} Z_{-k}, \text{ for } k \in N_0, l \in \mathbb{N}_0.$$
(53)

Therefore one has eq. (33) with $k \in \mathbb{Z}$ and $l \in \mathbb{Z}$.

Proof:

1) With the map $W^{[-1]}$ from Proposition 6, eq. (30), with a^{-1} from eq. (25), the hexagon centers O_{-k} , in the complex plane denoted by Z_{-k} , satisfy

$$Z_{-k} = W^{[-1]}(Z_{k-1}) = W^{[-k]}(Z_0) = W^{[-k]}(1) = (a^{-1})^k = a^{-k}, \text{ for } k \in \mathbb{N}_0.$$
(54)

2) This is clear from part 1).

3) This is also clear, repeating the steps which led to *Proposition 6*, part **2**), and the rewriting of S polynomials with negative index, as given.

4) The logarithmic spiral, by construction of the maps W and $W^{[-1]}$, interpolates between all hexagon centers Z_k , for $k \in \mathbb{Z}$.

5) The periodicity up to scaling is obvious from part 1).

References

- I. N. Bronstein, et al., Taschenbuch der Mathematik, 3. Auflage, 1997, Verlag Harri Deutsch; p.215, eq. (3.403).
- [2] Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012.
- [3] Wolfdieter Lang, On a Conformal Mapping of Golden Triangles, Papua New Guinea Journal of Mathematics 2 (1991) 12-18. See https://www.itp.kit.edu/~wl/links.html, with corrections.
- [4] Mario Livio, The Golden Ratio, Broadway Books, New York, 2002.
- [5] $Maple^{TM}$, http://www.maplesoft.com/.
- [6] Ernst Peschl, Funktionentheorie I, Bibliographisches Institut, Mannheim, 1967, pp. 26 32.
- [7] E. Weisstein's Word of Mathematics, Cayley-Hamilton theorem, http://mathworld.wolfram.com/Cayley-HamiltonTheorem.html.
- [8] Wikipedia, Cayley-Hamilton theorem, https://en.wikipedia.org/wiki/Cayley%E2%80%93Hamilton_theorem.
- [9] Wikipedia, Möbius transformation, https://en.wikipedia.org/wiki/M%C3%B6bius_transformation.

Keywords: Conformal Mapping, Hexagon, Spiral

Concerned with OEIS sequences <u>A002530</u>, <u>A002531</u>, <u>A002605</u>, <u>A019892</u>, <u>A026150</u>, <u>A049310</u>, <u>A057079</u>, <u>A174257</u>, <u>A300067</u>, <u>A300068</u>, <u>A300069</u>, <u>A300076</u>, <u>A300293</u>.

Figure 1 Figure 2 Figure 1: Construction $H_k \to H_{k+1}$: $C_k(O_k, r_k), V_k(0), (x_k, y_k), D_k = \overline{V_k(0), V_k(2)}, \overline{V_k(2)}, \overline{V_k(2)}, O_{k+1} = r_k, C_{k+1}(O_{k+1}, r_{k+1} = \sigma^k, V_{k+1}(3), V_{k+1}(0), (x_{k+1}, y_{k+1}), \dots$

Figure 3: The first three hexagons and the first four circles.

Figure 4: The discreet hexagon spiral of the first 13 centers. The interpolating circular arcs (dashed blue) and the logarithmic spiral (solid red) are almost indistinguishable).

Figure 5: The circle $C_0(0, 1)$ and the first six circles $C_{-k}(O_{-k}, \sigma^{-k})$, for k = 1, 2, ..., 6. Figure 6: The fixed point S, the center $O_0 = 0$, the first 12 centers O_{-k} with k = 1, 2, ..., 12. The interpolating circular arcs (dashed blue) and the logarithmic spiral (solid red) are almost indistinguishable.

k	$(\overrightarrow{v}_k)_{x_0} \ \cdot 1 \ , \ \cdot \sqrt{3}$	$(\overrightarrow{v}_k)_{y_0}\ \cdot 1\ ,\ \cdot \sqrt{3}$	$(O_k)_{x_0} \ \cdot 1 \ , \ \cdot \sqrt{3}$	$(O_k)_{y_0} \ \cdot 1 \ , \ \cdot \sqrt{3}$
1	-1/2 , $1/2$	-1/2 , $1/2$	-1/2 , $1/2$	-1/2 , $1/2$
2	-5/2 , $3/2$	-1/2 , $1/2$	-3, 2	-1, 1
3	-7, 4	2 , -1	-10, 6	1, 0
4	-14, 8	14, -8	-24, 14	15, -8
5	-14, 8	52, -30	-38 , 22	67, -38
6	38, -22	142, -82	0, 0	209, -120
7	284 , -164	284, -164	284 , -164	493, -284
8	1060 , -612	284, -164	1344 , -776	777, -448
9	2896, -1672	-776, 448	4240 , -2448	1, 0
10	5792, -3344	-5792, 3344	10032 , -5792	-5791, 3344
11	5792, -3344	-21616 , 12480	15824 , -9136	-27407, 15824
12	-15824, 9136	-59056, 34096	0,0	-86463, 49920

In the following tables all length have been divided by r_0 .

Table 1

Table 2

-				
k	$(\overrightarrow{V}_k(0))_{x_0}$	$(\overrightarrow{V}_k(0))_{y_0}$	$ ho_k^2 = \left \overrightarrow{O_0, O_k} \right ^2$	$tan \hat{\varphi}_k$
	$\cdot 1 , \cdot \sqrt{3}$	$\cdot 1 \ , \ \cdot \sqrt{3}$	$\cdot 1$, $\cdot \sqrt{3}$	$\cdot 1 , \cdot \sqrt{3}$
0	1,0	0,0	0,0	0,0
1	1, 0	-1, 1	2, -1	1,0
2	-1, 1	-4, 3	25 , -14	1, 1/3
3	-10, 6	-9, 6	209 , -120	5/4 , $3/4$
4	-38 , 22	-9, 6	1581 , -912	2 , 3/2
5	-104 , 60	29, -16	11717 , -6764	19/4 , $15/4$
6	-208, 120	209 , -120	87881 , -50160	∞
7	-208 , 1204	777 , -448	646361 , -373176	-71/8 , $-49/8$
8	568, -328	2121 , -1224	4818705 , -2782080	-7 , $-35/8$
9	4240 , -2448	4241 , -24488	35955713 , -20759040	-265/32 , $-153/32$
10	15824 , -9136	4241 , -2448	268365505 , -154940896	-209/16, $-173/24$
11	43232 , -24960	-11583, 6688	2003139041 , -1156512864	-989/32, $-539/32$
12	86464 , -49920	-86463, 49920	14951869569, -8632465920	∞

Table 3

k	$(\overrightarrow{V}_k(1))_{x_0}\ \cdot {f 1}\ ,\ \cdot \sqrt{f 3}$	$(\overrightarrow{V}_k(1))_{y_0} \ \cdot 1 \ , \ \cdot \sqrt{3}$	$(\overrightarrow{V}_k(2))_{x_0}\ \cdot {f 1}\ ,\ \cdot \sqrt{f 3}$	$(\overrightarrow{V}_k(2))_{y_0}\ \cdot 1\ ,\ \cdot \sqrt{3}$
0	1/2 , 0	$0 \;,\; 1/2$	-1/2 , 0	$0 \;,\; 1/2$
1	-1/2 , $1/2$	-3/2 , $3/2$	-2, 1	-1, 1
2	-5, 3	-4, 3	-7, 4	-1, 1
3	-19, 11	-4, 3	-19, 11	6, -3
4	-52 , 30	15, -8	-38 , 22	39, -22
5	-104 , 60	105 , -60	-38 , 22	143, -82
6	-104 , 60	389 , -224	104 , -60	389, -224
7	284 , -164	1061 , -612	776, -448	777, -448
8	2120 , -1224	2121 , -1224	2896 , -1672	777 , -448
9	7912 , -4568	2121 , -1224	7912 , -4568	-2119, 1224
10	21616, -12480	-5791, 3344	15824 , -9136	-15823, 9136
11	43232, -24960	-43231, 24960	15824 , -9136	-59055 , 34096
12	43232, -24960	-161343, 93152	-43232 , 24960	-161343, 93152

Table 4

k	$(\overrightarrow{V}_k(3))_{x_0}\ \cdot 1\ ,\ \cdot \sqrt{3}$	$(\overrightarrow{V}_{k}(3))_{y_{0}}\ \cdot 1\ ,\ \cdot \sqrt{3}$	$(\overrightarrow{V}_k(4))_{x_0}\ \cdot 1\ ,\ \cdot \sqrt{3}$	$(\overrightarrow{V}_k(4))_{y_0}\ \cdot {f 1}\ ,\ \cdot \sqrt{f 3}$
0	-1, 0	0, 0	-1/2 , 0	0, -1/2
1	-2, 1	0, 0	-1/2 , $1/2$	1/2 , -1/2
2	-5, 3	2, -1	-1, 1	2, -1
3	-10, 6	11, -6	-1, 1	6, -3
4	-10, 6	39, -22	4 , -2	15, -8
5	28, -16	105 , -60	28 , -16	29, -16
6	208 , -120	209 , -120	104 , -60	29, -16
7	776, -448	209 , -120	284 , -164	-75, 44
8	2120, -1224	-567, 328	568, -328	-567, 328
9	4240, -2448	-4239, 2448	568, -328	-2119, 1224
10	4240, -2448	-15823, 9136	-1552 , 896	-5791, 3344
11	-11584 , 6688	-43231, 24960	-11584, 6688	-11583, 6688
12	-86464 , 49920	-86463, 49920	-43232, 24960	-11583, 6688

Table	5
-------	----------

k	$(\overrightarrow{V}_k(5))_{x_0} \ \cdot 1 \ , \ \cdot \sqrt{3}$	$(\overrightarrow{V}_k(5))_{y_0} \ \cdot {f 1} \ , \ \cdot \sqrt{f 3}$	$2^{k} \rho_{-k}^{2} = 2^{k} \left \overrightarrow{O_{0}, O_{-k}} \right ^{2}$ $\cdot 1 , \cdot \sqrt{3}$	$\cdot 1 \;,\; \cdot \sqrt{3}$
0	1/2 , 0	0 , -1/2	0,0	$0 \;,\; -1/2$
1	1 , 0	0 , 0	1 , 0	$1/2 \;,\; -1/2$
2	1, 0	-1, 1	7 , 2	2 , -1
3	-1, 1	-4, 3	34, 15	6, -3
4	-10, 6	-9, 6	141 , 72	15, -8
5	-38, 22	-9, 6	526 , 285	29, -16
6	-104 , 60	29, -16	1831 , 1020	29, -16
7	-208, 120	209 , -120	6154 , 3479	-75, 44
8	-208, 120	777, -448	20625 , 11760	-567, 328
9	568 , -328	2121 , 1224	70738 , 40545	-2119 , 1224
10	4240 , -2448	4241 , -2448	251527 , 144628	-5791, 3344
11	15824 , -9136	4241 , -2448	925354 , 533071	-11583 , 6688
12	$\overline{43232}$, $-2\overline{4960}$	$-\overline{11583}$, 6688	3481569 , 2007720	$-1\overline{1583}$, 6688

Table 6

-				
k	$r_k = \left \overrightarrow{S, O_k} \right = \sigma^k$	$2^{\lfloor \frac{k+1}{2} \rfloor} \mathbf{r}_{-k}$	$(O_k)_X$	$(O_k)_Y$
	$\cdot 1 , \cdot \sqrt{3}$	$\cdot 1 \ , \ \cdot \sqrt{3}$	$\cdot 1 , \cdot \sqrt{3}$	$\cdot 1 \ , \ \cdot \sqrt{3}$
0	1,0	1,0	1 , 0	0, 0
1	-1, 1	1, 1	$3/2 \;,\; -1/2$	-1/2 , $1/2$
2	4, -2	2, 1	2 , -1	-3, 2
3	-10, 6	5, 3	0, 0	-10, 6
4	28, -16	7, 4	-14 , 8	-24, 14
5	-76, 44	19, 11	-66 , 38	-38 , 22
6	208 , -120	26 , 15	-208 , 120	0 , 0
7	-568, 328	71, 41	-492 , 284	284 , -164
8	1552 , -896	97, 56	-776 , 448	1344 , -776
9	-4240 , 2448	265 , 153	0 , 0	4240 , -2448
10	11584, -6688	362 , 209	5792 , -3344	10032 , -5792
11	$-31648, 182\overline{71}$	989 , 571	27408 , $-1\overline{5824}$	15824 , -9136
12	86464, -49920	1351, 780	86464 , -49920	0, 0

Table	7
-------	---

k	s(k)	$2^{s(k)} (\overrightarrow{v}_{-k})_{x_0} \\ \cdot 1 , \cdot \sqrt{3}$	$2^{s(k)} (\overrightarrow{v}_{-k})_{y_0} \\ \cdot 1 , \cdot \sqrt{3}$	t(k)	$2^{t(k)} \frac{(O_{-k})_{x_0}}{\cdot 1 \ , \ \cdot \sqrt{3}}$	$2^{t(k)} (O_{-k})_{y_0} \ \cdot 1 \ , \ \cdot \sqrt{3}$
0	2	1,1	-1, 1	0	0,0	0, 0
1	2	2, 1	-1, 0	2	-1 , -1	1, -1
2	2	2, 1	-2 , -1	2	-3, -2	2, -1
3	3	2, 1	-7, -4	2	-5, -3	4 , 0
4	4	-5, -3	-19, -11	3	-12 , -7	15, 4
5	4	-19, -11	-19 , -11	4	-19, -11	49, 19
6	5	-71, -41	-19 , -11	3	0, 0	34, 15
7	5	-97, -56	26, 15	5	71, 41	155 , 714
8	5	-97, -56	97, 56	5	168, 97	126 , 56
9	6	-97, -56	382 , 2098	5	265 , 153	32, 0
10	7	265 , 153	989, 571	6	627 , 362	-298, -209
11	7	989, 571	989, 571	7	989, 571	-1585, -989
12	8	3691, 2131	989, 571	6	0,0	-1287, -780

Table 8

k	v0(k)	$2^{v0(k)} (\overrightarrow{V}_{-k}(0))_{x_0}$ ·1, ·\sqrt{3}	$2^{v0(k)} (\overrightarrow{V}_{-k}(0))_{y_0}$ ·1 , · $\sqrt{3}$	$2^{v0(k)} (\overrightarrow{V}_{-k}(3))_{x_0}$ $\cdot 1 , \cdot \sqrt{3}$	$2^{v0(k)} (\overrightarrow{V}_{-k}(3))_{y_0}$ $\cdot 1 , \cdot \sqrt{3}$
0	0	1, 0	0, 0	-1, 0	0, 0
1	1	1 , 0	0 , -1	-2 , -1	1 , 0
2	2	-1 , -1	-1, -3	-5, -3	5, 1
3	2	-5, -3	-1 , -3	-5 , -3	9, 3
4	3	-19 , -11	3, -3	-5 , -3	27, 11
5	3	-26 , -15	15, 4	7, 4	34 , 15
6	3	-26 , -15	34 , 15	26, 15	34 , 15
7	4	-26, -15	113, 56	$97\ ,\ 56$	42, 15
8	5	71, 41	297, 153	256 , 153	-39, -41
9	5	265 , 153	297, 153	265 , 153	-233, -153
10	6	989 , 571	329 , 153	265 , 153	-925, -571
11	6	1351 , 780	-298, -209	-362, -209	-1287, -780
12	6	1351, 780	-1287, -780	-1351, -780	-1287, -780

k	v1(k)	$2^{v1(k)} (\overrightarrow{V}_{-k}(1))_{x_0}$ $\cdot 1 , \cdot \sqrt{3}$	$2^{v1(k)} (\overrightarrow{V}_{-k}(1))_{y_0} \\ \cdot 1 , \cdot \sqrt{3}$	$2^{v1(k)} (\overrightarrow{V}_{-k}(4))_{x_0} \\ \cdot 1 , \cdot \sqrt{3}$	$2^{v1(k)} (\overrightarrow{V}_{-k}(4))_{y_0}$ $\cdot 1 , \cdot \sqrt{3}$
0	1	1, 0	0, 1	-1 , 0	0, -1
1	1	1, 0	1 , 0	-2 , -1	0, -1
2	2	1, 0	2, -1	-7 , -4	2, -1
3	3	-1 , -1	3, -3	-19 , -11	13, 3
4	3	-5, -3	3, -3	-19 , -11	27, 11
5	4	-19 , -11	11 , -3	-19 , -11	87, 41
6	4	-26 , -15	23, 4	26 , 15	113, 56
7	4	-26 , -15	42, 15	$97\ ,\ 56$	113, 56
8	5	-26 , -15	129 , 56	362 , 209	129, 56
9	6	71, 41	329 , 153	989 , 571	-201 , -153
10	6	265 , 153	329 , 153	989 , 571	-925, -571
11	7	989 , 571	393 , 153	989 , 571	-3563, -2131
12	7	1351, 780	-234, -209	-1351, -780	-4914, -2911

Table 9

Table 10

k	v2(k)	$2^{v2(k)} (\overrightarrow{V}_{-k}(2))_{x_0}$ ·1, · $\sqrt{3}$	$2^{v2(k)} (\overrightarrow{V}_{-k}(2))_{y_0}$ $\cdot 1 , \cdot \sqrt{3}$	$2^{v2(k)} (\overrightarrow{V}_{-k}(5))_{x_0} \\ \cdot 1 , \cdot \sqrt{3}$	$2^{v2(k)} (\overrightarrow{V}_{-k}(5))_{y_0}$ $\cdot 1 , \cdot \sqrt{3}$
0	1	-1, 0	0, 1	1, 0	0, -1
1	2	-1 , -1	3, 1	-1 , -1	-1, -3
2	2	-1 , -1	5, 1	-5, -3	-1, -3
3	3	-1 , -1	13, 3	-19 , -11	3, -3
4	3	2, 1	15, 4	-26 , -15	15, 4
5	3	7, 41	15, 4	-26 , -15	34, 15
6	4	26, 15	23, 4	-26 , -15	113, 56
7	5	71, 41	13 , -11	71, 41	297, 153
8	5	71, 41	-39, -41	265 , 153	297, 153
9	6	71, 41	-201, -153	989 , 571	329, 153
10	6	-97, -56	-298, -209	1351 , 780	-298, -209
11	6	-362, -209	-298, -209	1351 , 780	-1287, -780
12	7	-1351, -780	-234, -209	1351 , 780	-4914, -2911