[go: up one dir, main page]

login
A299321
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
7
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 15, 2, 1, 1, 5, 10, 10, 5, 1, 1, 9, 70, 12, 70, 9, 1, 1, 22, 146, 130, 130, 146, 22, 1, 1, 45, 434, 284, 1306, 284, 434, 45, 1, 1, 101, 1206, 1557, 6051, 6051, 1557, 1206, 101, 1, 1, 218, 3228, 5838, 38035, 44381, 38035, 5838, 3228, 218, 1
OFFSET
1,12
COMMENTS
Table starts
.1...1....1.....1.......1........1..........1............1.............1
.1...1....1.....2.......5........9.........22...........45...........101
.1...1...15....10......70......146........434.........1206..........3228
.1...2...10....12.....130......284.......1557.........5838.........24821
.1...5...70...130....1306.....6051......38035.......234329.......1457212
.1...9..146...284....6051....44381.....473924......4898412......51303757
.1..22..434..1557...38035...473924....7885194....132676384....2249698337
.1..45.1206..5838..234329..4898412..132676384...3745566028..105240244212
.1.101.3228.24821.1457212.51303757.2249698337.105240244212.4909629881306
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +3*a(n-2) -2*a(n-4) for n>5
k=3: [order 10] for n>12
k=4: [order 29] for n>30
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..1. .0..1..1..0. .0..0..0..0. .0..0..0..0. .0..1..1..0
..0..0..0..0. .1..1..1..1. .0..0..0..0. .0..0..0..0. .1..1..1..1
..1..1..0..0. .0..1..1..0. .1..0..1..0. .0..1..0..1. .0..1..1..1
..1..1..1..1. .1..1..1..1. .0..0..0..0. .0..0..0..0. .1..1..0..0
..0..1..1..1. .0..1..1..1. .0..0..0..0. .1..0..0..1. .1..1..0..0
CROSSREFS
Column 2 is A052962(n-2).
Sequence in context: A193307 A331511 A201050 * A357097 A248537 A352000
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 06 2018
STATUS
approved