[go: up one dir, main page]

login
Number of nX4 0..1 arrays with every element equal to 0, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
1

%I #4 Feb 06 2018 13:46:34

%S 1,2,10,12,130,284,1557,5838,24821,106561,449606,1956599,8438660,

%T 36764273,160295868,700439879,3066084680,13431404246,58893058333,

%U 258348784769,1133779588694,4977030114598,21852290559017,95959325703386

%N Number of nX4 0..1 arrays with every element equal to 0, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.

%C Column 4 of A299321.

%H R. H. Hardin, <a href="/A299317/b299317.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 3*a(n-1) +15*a(n-2) -12*a(n-3) -117*a(n-4) -82*a(n-5) +220*a(n-6) +455*a(n-7) +187*a(n-8) -278*a(n-9) -592*a(n-10) -695*a(n-11) -353*a(n-12) +604*a(n-13) +404*a(n-14) -92*a(n-15) +874*a(n-16) +845*a(n-17) -523*a(n-18) -728*a(n-19) -234*a(n-20) -26*a(n-21) +90*a(n-22) +42*a(n-23) -39*a(n-24) +15*a(n-25) +40*a(n-26) +4*a(n-27) -8*a(n-28) -2*a(n-29) for n>30

%e Some solutions for n=5

%e ..0..0..0..1. .0..1..1..0. .0..0..1..1. .0..0..0..0. .0..0..0..1

%e ..0..0..0..0. .1..1..1..1. .0..0..1..1. .0..0..0..0. .0..0..0..0

%e ..1..0..0..1. .1..0..1..1. .1..1..1..0. .1..0..0..1. .1..0..0..0

%e ..0..0..0..0. .1..1..1..1. .1..1..1..1. .0..0..0..0. .0..0..1..1

%e ..1..0..0..1. .1..1..1..1. .0..1..1..1. .0..0..0..0. .0..0..1..1

%Y Cf. A299321.

%K nonn

%O 1,2

%A _R. H. Hardin_, Feb 06 2018