[go: up one dir, main page]

login
Partial sums of A008137.
51

%I #12 Oct 03 2018 17:40:10

%S 1,5,14,31,59,101,161,242,347,479,641,837,1070,1343,1659,2021,2433,

%T 2898,3419,3999,4641,5349,6126,6975,7899,8901,9985,11154,12411,13759,

%U 15201,16741,18382,20127,21979,23941,26017,28210,30523,32959,35521,38213,41038

%N Partial sums of A008137.

%C Euler transform of length 6 sequence [5, -1, 1, -1, 1, -1]. - _Michael Somos_, Oct 03 2018

%H Colin Barker, <a href="/A299276/b299276.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1,0,1,-3,3,-1).

%F From _Colin Barker_, Feb 11 2018: (Start)

%F G.f.: (1 + x)^3*(1 - x + x^2)*(1 + x^2) / ((1 - x)^4*(1 + x + x^2 + x^3 + x^4)).

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8) for n>7.

%F (End)

%F a(n) = -a(-1-n) for all n in Z.

%e G.f. = 1 + 5*x + 14*x^2 + 31*x^3 + 59*x^4 + 101*x^5 + 161*x^6 + ... - _Michael Somos_, Oct 03 2018

%t a[ n_] := (8 n^3 + 12 n^2 + 40 n + 18 - {3, 3, 0, -3, -3, 3}[[Mod[n, 5] + 1]]) / 15; (* _Michael Somos_, Oct 03 2018 *)

%o (PARI) Vec((1 + x)^3*(1 - x + x^2)*(1 + x^2) / ((1 - x)^4*(1 + x + x^2 + x^3 + x^4)) + O(x^60)) \\ _Colin Barker_, Feb 11 2018

%o (PARI) {a(n) = (8*n^3 + 12*n^2 + 40*n + 18 - 3*(n%5<2) + 3*(n%5>2)) / 15}; /* _Michael Somos_, Oct 03 2018 */

%Y Cf. A008137.

%Y The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Feb 10 2018