[go: up one dir, main page]

login
Expansion of 1/(1 - x*Product_{k>=1} (1 - k*x^k)).
5

%I #5 Feb 06 2018 09:19:33

%S 1,1,0,-3,-6,-5,11,37,59,13,-155,-402,-415,263,1981,3748,2289,-6643,

%T -22642,-31322,-187,99040,229410,216823,-230029,-1223267,-2097812,

%U -955237,4468902,13393758,16752461,-3891704,-62382597,-131974181,-106680562,173622424,741553622,1163057561,329176545

%N Expansion of 1/(1 - x*Product_{k>=1} (1 - k*x^k)).

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F G.f.: 1/(1 - x*Product_{k>=1} (1 - k*x^k)).

%F a(0) = 1; a(n) = Sum_{k=1..n} A022661(k-1)*a(n-k).

%t nmax = 38; CoefficientList[Series[1/(1 - x Product[1 - k x^k, {k, 1, nmax}]), {x, 0, nmax}], x]

%Y Antidiagonal sums of A297323.

%Y Cf. A022661, A067687, A299105, A299106, A299108, A299162, A299164, A299166, A299167, A299208, A299210, A299211, A299212.

%K sign

%O 0,4

%A _Ilya Gutkovskiy_, Feb 05 2018